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Abstract— Singulation is useful for manufacturing, logistics,
and service applications; we consider the problem in a planar
setting. We propose a novel O(n(n + v)) linear push policy
(n denotes the number of objects, v denotes the maximum
number of vertices per object), ClusterPush, that can be
efficiently computed using clustering. To evaluate the policy, we
define singulation distance as the average pairwise distance of
polygon centroids given random arrangements of 2D polygonal
objects on a surface, and seek pushing policies that can
maximize singulation distance. When compared with a brute
force evaluation of all candidate pushes in Box2D simulator
using 50,000 pushing scenarios, ClusterPush achieves 70% of
the singulation distance achieved using brute force and is 2000x
faster. ClusterPush also improves on previous pushing policies
and can be used for multi-point pushes with two-point and edge
(infinite-point) contacts. Compared with pushes with single-
point contacts using ClusterPush, pushes with two-point and
edge contacts improve singulation by 7% and 13% respectively.
In physical experiments conducted with an ABB YuMi robot
on 40 sets of 3-7 blocks, ClusterPush increases singulation
distance by 15-30%, outperforming the next best policy by
24% on average. Data and code are available at https:
//github.com/Jekyll1021/MultiPointPushing.

I. INTRODUCTION

In manufacturing, logistics, and service applications, ob-
jects of interest may not be directly graspable due to
reachability constraints introduced by the presence of other
movable objects. For example, consider a robot trying to
retrieve a pen from a messy desk. It may first have to
move books and papers out of the way before there is a
viable path to access and grasp the pen. Reasoning about
object motion caused by incidental object contacts is a key
challenge and has been studied extensively in prior work [1–
5]. Recent work suggests that it is additionally valuable
to apply singulation motions [6–8] or deliberate pushes to
separate objects before grasping. Building on prior work,
we study the problem of planar singulation, where, given a
collection of 2D convex polygon objects on a planar surface,
the objective is to maximize the average pairwise distance
between polygons (singulation distance). Although previous
work suggests that graspability is not always correlated with
object separation [6], inaccurate perception may appear due
to lack of object separation [9]. Figure 1 illustrates an initial
configuration, a linear push, and the outcome.
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Fig. 1: We define singulation distance as the average pairwise
distance between the center of mass of all objects. Illustrated above
left to right: a single-point push that increases singulation distance
by 75%.

Directly planning in a physics simulator can be computa-
tionally expensive. Even in a simplified Box2D [10] simula-
tor, planning for a 3-body configuration takes 16 seconds
on average on a 2.9GHz Intel Core I5-5287U processor,
and this runtime scales linearly with the number of objects.
This drawback motivates our study of geometric heuristics
for singulation that can be computed several orders of
magnitude faster than full dynamic simulation. On randomly
generated planar singulation tasks, we compare 8 singulation
heuristics against brute-force simulation. We use a Box2D
simulation environment with simplified contact friction to
ensure deterministic solutions. We ran 50,000 simulated
trials of cluttered objects under 52 different configurations
of object numbers and shapes for each of the heuristics
studied. Based on the results of this study, we observed
two key components contribute to empirically good pushes:
moving the center object of a set without slipping for 3-body
cases and moving more than one object away from a large
object cluster for cases with more objects. These observations
motivate the development of ClusterPush, an O(n(n + v))
pushing heuristic, where n denotes the number of objects
and v denotes the maximum number of vertices per object.

ClusterPush plans a push by first finding the object closest
to the center of the set of objects, and then uses geometric
clustering to plan a push direction. It plans to push up to
two objects away from the other objects without slipping.
ClusterPush achieves 70% of the singulation distance found
through brute-force evaluation of candidate pushes in 8ms,
almost 2000x faster compared to 16s of brute-force evalua-
tion.

We also consider pushes with a contact line (edge pushes)
and pushes with two contact points (two-point pushes) to
maximize contact. In complex configurations with 10 or more
objects, edge pushing and two-point pushing can improve
pushes planned by ClusterPush by 13% and 7% relative to
single-point pushes respectively.
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Fig. 2: (TOP) Single-point, edge and two-point pushes of an
ABB Yumi robot and (BOTTOM) single-point, edge and two-point
pushes in simulation.

We also implemented ClusterPush on a physical robot
system (ABB YuMi), where edge pushes and two-point
pushes improved the increase in singulation distance by
18.4% and 28.4%, respectively over single-point pushes.

This paper makes the following contributions:
1) A Box2D simulation environment for singulation with

experimental data that includes over 50,000 planar
scenarios and 8 singulation policies.

2) A singulation distance metric and 5 novel pushing
policies.

3) A O(n(n + v)) policy, ClusterPush, which leverages
sticking pushes, the collision between objects, and a
disk-based approximation.

4) Heuristics for edge pushes and two-point pushes.

II. RELATED WORK

Pushing is a core manipulation primitive and the mechan-
ics of planar pushing has been studied in various forms for
the last 30 years [11–13]. The seminal result is Mason’s
rule, which specifies the push result as a function of the
right boundary of the friction cone, the left boundary of the
friction cone, and the velocity vector of the push. When two
of the three lines are left of the Center of mass (CoM), the
object rotates clockwise, and vice versa. The object purely
translates when the CoM is within the friction cone and the
push direction is through the CoM.

The principle behind ClusterPush is that push directions
that maximize translation tend to be effective at singulation
because such directions can maximally displace target ob-
jects. Note that pure translational motions are actually quite
hard to achieve as they require careful alignment of a gripper
and the CoM of an object. Thus, object-to-object contacts
are almost always rotationally dominant. Finding a single
object and effectively pushing it with a strong translational
motion naturally rotates other objects away from collision.
This intuition is a heuristic and has limitations in cases

where collisions are inevitable with an increasing number
of objects, or where rotational motion is inevitable because
push objects slip away.

This principle is supported by results in prior singulation
work [6, 9, 14]. Hermans et al. proposed a guided linear
push policy [14] which identifies the two closest objects
and pushes one of them along the boundary between the
two objects. All pushes are through the CoMs. These results
were reproduced by [6], which additionally showed that the
boundary shear approach improves downstream grasp quality
metrics in addition to object separation.

Some recent advances in planar pushing include a high-
fidelity single-object planar pushing dataset [15, 16], a
heuristic-guided search for surface decluttering [17] and
an end-to-end push proposal network for singulation [18].
Both latter works consider objects in clutter, and Cogsun et
al. showed that physical simulation can effectively capture
interactions in object contacts [17].

Researchers have investigated data-driven approaches for
planar pushing and surface decluttering. The existing phys-
ical simulators rely on analytical models to coarsely ap-
proximate contact outcomes [10, 19–21]. The viability
of large-scale datasets enables accurate learning for planar
pushing to a precise pose [22]. However, most prior work
focuses on single-object planar pushing. Recently, Agboh
and Dogar investigated the effect of pushing velocity [23];
Xie and Chakraborty proposed a principled dynamic model
for pushing [24]; Ajay et al. designed a physics engine with
an RNN-based residual model to resemble the stochastic
behavior of real-life planar-pushing dataset benchmarks [25];
Jiang et al. extended the data-augmentation technique to rigid
body simulation [26]. We hope to explore these directions in
future work.

Another very relevant line of work [1–5, 27] is grasping
or manipulation in clutter. We differentiate this work from
the problem of singulation as it largely studies the effects
of specific object contacts in the process of generating
a trajectory to a goal position. In contrast, we focus on
singulation (maximizing the average pairwise distance) itself.

III. PROBLEM STATEMENT

Let oi denote a 2D oriented polygon in the plane, ci ∈
R2 denote its center of mass, and θi ∈ [0, 2π) denote its
orientation. Let O = {o1, ..., on} be a set of such polygons
and A = {(o1, c1, θ1), ..., (on, cn, θn)} be an arrangement of
the set. We assume that all objects are convex with known
uniform density, geometry, and pose.

A push p ∈ R2×R2 is a planar linear motion defined by a
directed line-segment (x0, y0) → (x1, y1). After applying a
push to the arrangement of objects, the arrangement changes
due to rotations and translations of each polygon:

A′ = p(A) = {(o1, c′1, θ′1), ..., (on, c′n, θ′n)}
Definition 1 (Singulation Distance): We define the singu-

lation distance as the average log pairwise distance between
the CoM of all objects. We take the log distance to discour-
age dense clutters:



s(A) =
∑n−2

i=0

∑n−1
j=i+1 ln(||ci − cj ||)2(

n
2

)
The objective is to find the linear push that maximizes the

increase in singulation distance:

p∗ = max
p

s(p(A))− s(A)
s(A)

A. Assumptions

We make the following assumptions:

1) The pushing surface is planar with a homogenous
friction coefficient.

2) Object-to-object and gripper-to-object contacts have
the same friction coefficient with equal static and
dynamic coefficients.1

3) Objects have the same density.
4) A quasi-static model of push dynamics.

We implement this model in a Box2D simulator with
the following parameters: a global friction coefficient µ ∼
N (0.5, 0.1) for both gripper-object contact and object-object
contact, and a global density ρ ∼ N (1.0, 0.2). Line contacts
are calibrated in the simulator based on the size of the
grippers relative to objects on the ABB YuMi robot. We
check the reachability of a push by ensuring free space for
the gripper at the push starting point.

B. Types of Pushes

Assuming constant push velocity, we investigate pushing
under three contact modes: single-point, edge, and two-point
(Figure 2). For point pushing, a line segment defines the
trajectory of the contact point while for two-point pushing
and edge pushing, a line segment defines the trajectory of
the midpoint of the two contact points or contact line.

Single-Point Push: Let usp = (P,Q) ∈ R2 × R2 be a point
linear pushing action in 2D space defined by start point P ∈
R2 and end point Q ∈ R2, such that the pushing jaw, starting
at point P , moves a fixed distance along line segment PQ.

Two-Point Push: Let utp = (P,Q) ∈ R2 × R2 be a two-
point linear pushing action in 2D space defined by start point
P ∈ R2 and end point Q ∈ R2. P is the midpoint of the
line segment connecting the two gripper jaws f1, f2 with a
predefined length l such that PQ⊥f1f2. The two jaws move
a fixed distance along

−−→
PQ at the same rate.

Edge Push: Let ue = (P,Q) ∈ R2 × R2 be an edge linear
pushing action in 2D space defined by start point P ∈ R2

and end point Q ∈ R2. P is the midpoint of the pushing
edge with a predefined length l such that the pushing edge
is perpendicular to PQ. The pushing edge moves a fixed
distance along

−−→
PQ.

1Box2D does not use a Coulomb model for friction. It calculates the
contact dynamics with an idealized infinite-friction edge contact, then damps
the resulting impulse by the amount of friction between the two bodies.
This model removes indeterminate solutions that might arise due to discrete
contact modes.

Fig. 3: The three steps of ClusterPush. The first step identifies a
center object to push, the second step groups objects into clusters,
and the third step chooses between a direction to push two objects
(Bottom left) and a direction to separate the push object (Bottom
right).

IV. CLUSTERPUSH

Based on the intuition given earlier, we focus on sticking
pushes with a single target object. Although ClusterPush is
motivated by 3-object problems, we find that ClusterPush
also performs well on larger problems. We observe that,
in object clusters with more than three objects, it is often
desirable to separate more than one object from the large
cluster. To address this limitation, we plan a push pointing
towards another object’s center of mass, creating a sticking
contact for moving both objects. There are a few important
components in the policy: (1) identifying a target object,
(2) grouping objects based on geometric proximity, and (3)
identifying a sticking push that pushes an object away from
the rest of a cluster. Figure 3 steps through one push planned
by ClusterPush.

Step 1. Target Object Identification

For all pairs of objects, we calculate the Euclidean distance
between their CoMs:

D(oi, oj) = ‖ci − cj‖
Each object is then assigned a connectivity score, which

is the sum of its distances to all other objects:

C(oi) =
N∑
D(oi, oj)

The push object o∗ is the object is the object with the lowest
connectivity score:

o∗ = argmin
i

C(oi)

Thus, o∗ is the object that if removed (without affecting the
others), would most increase the sum of pairwise distances.



Algorithm 1: Find Pushing Direction
1 find push direction(G, o∗);

Input : a list of clusters G = {g1, ..., gm}, a push object o∗
Output: push trajectory defined by start point and end point

us = (p, q) ∈ R2 × R2

2 g∗ = the cluster gi contains o∗;
3 if g∗ has the most objects and m 6= 1 then
4 furthest = Furthest pushing direction to the centroid of each

cluster g ∈ G \ {g∗};
5 for o in g∗ do
6 find vector connecting co∗ and co that is closest to

furthest;
7 end
8 return (p, q) along the direction of vector;
9 else

10 for 16 directions v spans 0 to 2π do
11 for cluster ∈ G \ {g∗} do
12 find the centroid of the cluster;
13 compute the distance from the centroid of the cluster

to v;
14 end
15 end
16 find v with the minimum sum of the distance;
17 return (p, q) along the direction of v and across co∗ ;
18 end

Step 2. Object Clustering

We model an object oi with its smallest bounding circle
(ci, ri), where ci denotes the object’s CoM and ri denotes
the radius of the circle.

Using the CoM of the designated push object o∗ found by
Step 1 as the center of a cluster gj , we incrementally grow
the cluster to encompass the other neighboring objects until
no other object satisfies the criteria:

||gj − ci|| < rj + ri

All objects within that cluster are removed from consider-
ation, and the clustering algorithm recurses. To seed the next
cluster, we find the object with the maximum sum of CoM
distances to the other cluster centers:

argmax
i

m∑
j=1

||gj − ci||

The result is a list of clusters, one of which is centered
on the target push object.

Step 3. Push Direction

A linear push can make sticking contact with more than
one object: one via pushing contact, the others via an indirect
push from the push object, as shown in Figure 1. However,
ClusterPush only plans sticking contact for two objects: a
push that connects the CoM of both objects.

In scenarios where more than three objects are densely
cluttered, it is often desirable to push two objects away
instead of one. In ClusterPush, if there are at least two
clusters and the cluster centered around the push object
contains the most objects, a two-object push is planned.
Otherwise, a one-object push is planned. This step is detailed
in Algorithm 1.

The selecting criteria are: if the cluster centered around the
push object contains the most objects, and there is more than

one cluster, the policy plans to move two objects; otherwise,
it plans to move only the push object. The intuition behind
this criteria is that if the cluster with the most objects does
not contain the push object, the push object is considered
sufficiently separated from all other objects.

Case 1. Two-object Push: If the cluster has more than 3
objects, we plan a two-object push by choosing a direction
that will create a sticking contact between the two objects,
and move them in the furthest direction from the other
objects.

To create a sticking contact, we only consider pushing
directions connecting the CoM of the push object and the
CoM of another object in the same group as the push object.
For all the objects in the group, we find the object that creates
the push direction furthest away from the CoMs of other
objects in the cluster, formulated as:

os = argmin
i

j∑
oj 6=oi,oj 6=o∗

proj(oi, v)

where proj denotes a standard orthogonal projection. There-
fore, the selected vector would move objects away from the
rest to the greatest extent.

Case 2. Single-object Push: If the cluster has no more than
3 objects, we seek to separate the push object from the rest
without slipping. We model each object with its bounding
circle and find the push direction that maximizes the sum of
distances from disk borders of the other objects to pushing
trajectory.

V. EXPERIMENTAL SETUP

We compare ClusterPush to eight policy baselines, four of
which are new.

A. Policy Inputs

All of the evaluated policies require full state information
(geometries, positions, and orientations of all polygons).
The state information is retrieved from Box2D and collision
checks are handled within Box2D. We create cluttered sets
with 3 to 15 randomly generated objects and initialize
the simulation by sampling over N (0.5, 0.1) for friction
coefficients and N (1.0, 0.2) for object densities.

To evaluate the difficulty posed by specific object sets, we
measure the “eccentricity” [28] of objects, or how similar the
objects are to a disk. Less-eccentric objects were empirically
easier to singulate. Eccentricity is quantified by the ratio of
an object’s area and the area of its minimum bounding circle,
defined as Oc = (c, r), where c ∈ R2×R2 is the CoM of the
object O and r is the maximum Euclidean distance between c
and any of the object’s vertices. Figure 4 illustrates 4 sample
objects from each group. We experiment with 4 object sets
of increasing eccentricity.

B. Baseline policies

We consider the following baseline policies:

Brute Force: This singulation policy performs a brute-force
evaluation of a large set of candidate pushes via forward
simulation. For each of the objects in the cluster, the policy



Fig. 4: From left to right: Group 0, 1, 2 and 3 polygon objects.
Center of mass of each object is marked by a black dot. The
numbers summarize the average increase in singulation distance
using quasi-random policy normalized by brute force. Empirically,
objects with higher eccentricity (see text) are hard to singulate.

searches over 16 uniformly sampled push directions and 16
uniform perturbations of the push vector passing through the
object centroid.

Quasi-random: The Quasi-random policy generates a ran-
domly sampled push vector through the centroid of a ran-
domly sampled object. It does not optimize the push direc-
tion.

Boundary Shear Policy: The Boundary Shear policy is
adapted from the policy introduced by Hermans et al. [14].
It aims to separate the two closest objects by pushing one in
the direction of free space.

Cluster Diffusion Policy: The cluster diffusion policy is
adapted from the policy introduced by Danielczuk et al. [6].
It aims to push one object away from the center of the clutter
towards free space.

C. New Baselines

Observing some of the failure modes in these baselines,
we proposed a few variations and improvements. These new
variations incrementally build up to ClusterPush.

Center Object Removal Policy: This planner finds the object
which, if removed from the clutter, results in maximum
separation. It pushes the object away from the line segment
connecting the center of mass of the two objects closest to
the selected object.

Minimum Contact Range Policy: This policy pushes the
selected object in the direction that minimizes its contact
range.

Minimum Overlap Policy: This policy pushes the selected
object in the direction that maximizes the distance between

the CoMs of other objects and the push line segment.

Two Cluster Separation Policy: Since the Minimum Overlap
Policy often performs poorly in dense object clusters, we
propose a new policy that separates clusters into two clusters
and pushes the selected object to the center of a cluster in
which it is not contained.

VI. SIMULATION RESULTS

A. Summary of Point Pushing Results

Figure 6 provides a summary of the performance of each
policy as the number of objects increases. It shows that
the three new policies (Center Object Removal, Minimum
Contact Range, Minimum Overlap) aiming to move the
center object while minimizing contact between objects
perform well in scenarios with fewer and less-eccentric
objects, but are inferior to other policies in denser clutter
with more-eccentric objects. On the other hand, Cluster
Diffusion, which seeks to push one object away from clutter,
does not perform well in scenarios with fewer and less
eccentric objects but performs better in denser clutter with
more eccentric objects. Table 1 provides a summary of
the runtime and performance of each policy. It shows that
ClusterPush performs comparably to the other policies in
easy scenarios and also remains robust in hard scenarios.
In the easiest 3-body scenarios with less-eccentric objects
(Groups 0 and 1), ClusterPush achieves 88.7% of the increase
in separation distance compared to brute-force evaluation
of candidate pushes, comparable to other policies (71.0%
for Cluster Diffusion, the best previously proposed baseline,
88.7% for Minimum Overlap, the best new baseline). In
hard 15-body scenarios with 15 objects of higher eccentricity
(Groups 2 and 3), ClusterPush outperforms the Cluster
Diffusion policy, the best policy among baselines, by 19.3%
on average. However, we observe that all policies perform
worse in hard scenarios (more objects and more-eccentric
objects); ClusterPush only achieves 49.4% of the increase
in separation distance in these scenarios compared to brute-
force search. ClusterPush consistently achieves 70.2% of
the increase in separation distance compared to brute-force
search across all the scenarios, whereas Cluster Diffusion
achieves 53.9% and Minimum Overlap achieves 64.8%.

Table 1 also compares the runtime (including simula-
tion) for the pushing policies. We observe that ClusterPush
achieves a 1905x speedup compared to brute-force search.
Furthermore, none of the other policies except Quasi-random
run significantly faster than ClusterPush.

B. Effect of Multi-point Contact Modes

We observe that most failure modes for single-point pushes
occur when the push object slips away. To address this
issue, we evaluate edge pushing with the length of the
contact edge set to approximately the jaw width of the
ABB YuMi robot, and two-point pushing using 60% of the
radius of the push object’s smallest bounding circle as the
distance between jaws. We choose this heuristic because
it performs empirically well. Table 2 provides a summary
of the improvement in push performance for each of the



Fig. 5: Effects of proposed pushing policies. The top image is the planned push and the bottom image is the resulting state, each labeled
with the state’s singulation distance.

Average Runtime (ms)
on 2.9GHz Intel I5-5287U

Performance: Easy Scenarios
(3-body Group 0/1)

Performance: Hard Scenarios
(15-body Group 2/3) Average Performance

Brute Force 16150.023 0.751 (100.0%) 0.078 (100.0%) 0.244 (100.0%)
Quasi-random 7.850 0.429 (57.2%) 0.018 (23.4%) 0.104 (42.8%)
Boundary Shear 12.495 0.510 (67.9%) 0.020 (26.2%) 0.124 (51.1%)
Cluster Diffusion 10.474 0.534 (71.0%) 0.032 (41.4%) 0.131 (53.9%)
Center Object Removal 8.437 0.647 (86.2%) 0.030 (38.3%) 0.160 (65.8%)
Min Contact Range 12.381 0.547 (72.8%) 0.033 (42.6%) 0.153 (62.9%)
Min Overlap 11.493 0.666 (88.7%) 0.026 (34.6%) 0.157 (64.8%)
Two Cluster Separation 10.609 0.512 (68.2%) 0.025 (31.5%) 0.149 (61.4%)
ClusterPush 8.475 0.666 (88.7%) 0.038 (49.4%) 0.171 (70.2%)

TABLE I: Results for single-point pushing in 52,000 scenarios. Performance is defined as the ratio of the change of singulation distance
after and before a push (normalized to Brute Force = 100%). Average performance is computed across 52,000 scenarios of all object
numbers and shapes. ClusterPush outperforms other policies while maintaining a fast runtime.

Single-point Pushing Edge Pushing Two-point Pushing
Quasi-Random 0.027 (100.0%) 0.031 (114.8%) 0.029 (107.4%)
Boundary Shear 0.032 (100.0%) 0.036 (112.5%) 0.035 (109.4%)
Cluster Diffusion 0.043 (100.0%) 0.062 (144.2%) 0.065 (151.2%)
Center Object Removal 0.046 (100.0%) 0.050 (108.7%) 0.047 (102.2%)
Min Contact Range 0.050 (100.0%) 0.055 (110.6%) 0.052 (104.1%)
Min Overlap 0.042 (100.0%) 0.044 (105.9%) 0.043 (101.4%)
Two Cluster Separation 0.044 (100.0%) 0.050 (113.6%) 0.047 (106.8%)
ClusterPush 0.056 (100.0%) 0.063 (112.5%) 0.060 (107.1%)

TABLE II: Results for Multi-point Pushing over 24,000 scenarios with 10 to 15 objects. Contact edge length is approximated by the jaw
width of the ABB YuMi robot, and the distance between two contact points is 60% of the radius of the push objects smallest bounding
circle. Performance is defined as the ratio of the change of singulation distance after and before a push (normalized to single-point push
= 100%). Multi-point contact improves pushes for all policies, but has the largest effect on Cluster Diffusion. This effect may occur due
to Cluster Diffusion not planning pushes that avoid contact with other objects, and thus benefiting from sticking pushes.

linear policies in scenarios with 10 to 15 objects. Multi-
point pushing can consistently improve push performance
for linear push policies in complex scenarios with 10-15
objects. Furthermore, edge pushing improves singulation of
ClusterPush by 12.5% while two-point pushing with the
above heuristic improves singulation by 7.1% compared to
a single-point push.

Since ClusterPush performs well on hard cases and thus
has less room to improve, we compare edge pushes and two-
point pushes against single-point pushes for other policies.
An edge push can improve the worst-performing policy,

Quasi-random, by 14.8%; a two-point push can improve
Quasi-random by 7.4%. As multi-point pushes serve to
prevent objects from slipping away, the policies that seek to
minimize contact between objects (Center Object Removal,
Minimum Contact Range, Minimum Overlap) benefit less
than Cluster Diffusion, which seeks to push one object away
from the clutter. The Cluster Diffusion Policy benefits the
most from multi-point pushing, achieving a 44.2% improve-
ment from edge pushes and 51.2% improvement from two-
point pushes.



Fig. 6: Mean and standard deviation of the singulation distance
increase after pushes, normalized by quasi-random performance.
ClusterPush outperforms other policies as the number of object
increases.

VII. PHYSICAL EXPERIMENTS

We plan pushes on an ABB YuMi robot using the Clus-
terPush policy and Cluster Diffusion (the best previously
proposed baseline) on 40 sets of three to seven wooden
blocks sampled from square blocks, isosceles right triangle
blocks, and rectangle blocks. For each set of cluttered
objects, we use a Photoneo PhoXi depth sensor to acquire a
point cloud of the bin. Then, we perform object segmentation
using the Point Cloud Library implementation of Euclidean
Cluster Extraction [29]. For a depth-image input, we smooth
contours of segmented point clusters using OpenCV’s im-
plementation of the Douglas-Peucker algorithm [30] and
import the resulting polygon into the Box2D simulator.
We approximate object center of mass as the centroid of
the segmented cluster. The robot then executes pushes by
following the linear push trajectory planned by an object
singulation policy. The single point pushes are executed by
closing the parallel jaw gripper and using the jaw tips, edge
pushes by closing the parallel jaw gripper and using the
planar side of the jaws, and two-point pushes by opening
the gripper based on the pre-computed distance as in Section
VI: 60% of the radius of the push object’s smallest bounding
circle.

ClusterPush outperforms Cluster Diffusion by 18.8% in
easy scenarios with three square blocks, 30.0% in hard
scenarios with mixed shapes, and 23.6% on average over 5
sets in 8 different configurations. Edge pushing and two-point
pushing improve push performance by 18.4% and 28.4% on
average respectively.

VIII. FUTURE WORK

Although this study focuses on the planar case and uses
simulation of frictional pushing that is deterministic and
hence imprecise, insights from this planar study are a
valuable step toward policies for real-world, more complex
singulation policies. ClusterPush can be adapted for this
purpose and we look forward to generalizing it to more

Fig. 7: Front view of the robot arm and the setup.

Easy Hard Average
Single-point ClusterPush 0.366 0.194 0.290
Single-point Cluster Diffusion 0.308 0.149 0.235
Edge ClusterPush 0.411 0.227 0.344
Edge Cluster Diffusion 0.377 0.188 0.277
Two-point ClusterPush 0.445 0.245 0.358
Two-point Cluster Diffusion 0.463 0.169 0.316

TABLE III: Results of physical experiments on 40 sets of three
to seven wooden blocks. Performance is defined as the ratio
of the change of singulation distance after and before pushing.
ClusterPush outperforms Cluster Diffusion in most scenarios, and
multi-point contact can improve both policies by more than 10%
in physical experiments.

realistic objects in physical settings. We also plan to in-
vestigate metrics that are more closely related to real-world
graspability.
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