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Abstract— When robust vacuum suction grasps are not ac-
cessible, toppling can change an object’s 3D pose to provide
access to suction grasps. We extend prior toppling models
by characterizing the robustness of toppling a 3D object
specified by a triangular mesh, using Monte Carlo sampling
to account for uncertainty in pose, friction coefficients, and
push direction. The model estimates the resulting distribution
of object poses following a topple action. We run 700 physical
toppling experiments using an ABB YuMi and find that the
model outperforms a baseline model by an absolute 26.9%
when comparing the total variation distance between each
model’s predicted probability distribution and the empirical
distribution. We use the robust model as the state transition
function in a Markov Decision Process (MDP) to plan optimal
sequences of toppling actions to expose access to robust suction
grasps. Data from 20,000 simulated rollouts suggest the policy
can increase suction grasp reliability by 33.6%, computed using
grasp analysis from the Dexterity Network (Dex-Net) 3.0. We
generate a dataset of the predicted reliability of toppling at
1,257,000 candidate points on 189 3D meshes. Code and datasets
can be found at https://sites.google.com/view/toppling

I. INTRODUCTION

Grasping a wide variety of objects is essential in home
de-cluttering, e-commerce warehouse manipulation, man-
ufacturing, and service robotics. However, the ability to
perceive and execute reliable grasps may be limited due
to visibility of graspable points on the object, kinematic
feasibility or environment collisions. Non-prehensile motions
can be attempted before grasping to reorient objects into
poses with increased visibility and access to robust grasps.

Previous research has shown that planar pushing can be
used when parallel jaw grasps are not accessible [1], [2],
[3], but planar pushing is less effective in increasing vacuum
suction grasp accessibility [1]. In contrast, toppling, the act
of pushing an object onto a new static resting pose with a
robotic point contact, can be used to expose new surfaces
for robust vacuum suction grasps.

Models of toppling for extruded 2D shapes have been
developed in prior work by Lynch [4], [5] and Zhang et
al. [6]. In this paper, we extend these models to 3D objects
by predicting planar rotations and topple actions that are
not perpendicular to the topple edge, and estimate topple
reliability under uncertainty in contact point position, friction
coefficients, and push direction. We also explore toppling
policies to increase access to robust vacuum suction grasps,
using suction grasp analysis from Dex-Net 3.0 [7].
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Fig. 1: Toppling the “Yoda Piggybank” object exposes access
to a robust vacuum suction grasp.

This paper contributes:
1) A quasi-static model that estimates topple reliability

for a 3D polyhedral mesh when pushed at a given point
under uncertainty in contact point position, friction
coefficients, and push direction.

2) A formulation of sequential toppling as an Markov De-
cision Process and a Value Iteration Policy to optimize
predicted suction grasp reliability.

3) A dataset of 1,257,000 candidate toppling points on
189 3D CAD models in a total of 1257 stable poses,
each labelled with associated toppling reliabilities.

4) Empirical data from 700 physical and 20,000 simulated
experiments evaluating the proposed model and policy,
respectively.

We compare performance of the model against baselines
without the additions of planar rotations and topple reliability
in 700 toppling attempts on an ABB YuMi robot.

Results suggest the model outperforms the toppling base-
line by an absolute 26.9% when comparing the total variation
of each predicted distribution with the empirical distribution.
Results from 20,000 simulated experiments suggest the Value
Iteration Toppling Policy can increase suction grasp reliabil-
ity by an absolute 28.4% over a Max-Height Baseline.

II. RELATED WORK

There is a wide range of work on feeding and orienting
parts, either through planar rotations (i.e. the object stays
in the same stable pose) or by reorienting objects into new
stable resting poses. We focus on toppling as a means to
increase access to suction grasps.

A. Reorienting in the Horizontal Plane

Approaches to reorienting in the horizontal plane include
pushing, squeezing with robotic grippers, and horizontal part



feeders. Mason and Lynch explored the use of a series of
stable pushes to reorient parts [8], [9], [10]. Other work
explores using grippers to reorient parts with squeezing [11],
[12] and dexterous manipulation [13]. Part feeding can be
used to orient parts on a conveyor belt [14], [15], [16].
While these approaches are successful in reorienting in the
horizontal plane, we consider toppling to reorient parts into
new stable resting poses, to increase suction grasp reliability.

B. Reorienting to a New Stable Pose

One approach to reorient objects to new stable poses
designs robotic grippers with multiple contact points de-
signed specifically for the objects of interest, in order to
execute several pinching motions while closing the gripper
around the object [17], [18]. These grippers perform well
with a single object, but do not generalize to the arbitrary
objects on which robots are expected to operate. Pivoting,
another reorienting motion primitive, is the act of loosely
picking up objects so that they can rotate around the parallel
jaw gripper’s axis due to gravity [19], [20]. Holladay et
al. [21] introduce a pivot dynamics model and Hou et
al. [22] combine pivoting and “rolling”, rotating the arm
while stiffly gripping the object, to more efficiently reorient
objects. However, these papers assume two-finger grasps are
available on the object, in which case toppling to find robust
grasps is unnecessary. We extend these papers by reorienting
when grasps are not available.

C. Toppling

Previous work has developed physics-based quasi-static
models of toppling behavior on conveyor belts [4], [5],
[6] and with robotic hands to move heavy objects [23].
Yamashita et al. [24] explore the use of multiple cooperative
robots to topple objects. However, these models only predict
motions of 2D extruded shapes, do not model object resis-
tance to planar rotations, and only model pushes perpendicu-
lar to the toppling edge. Lee et al. [25] discretize all possible
poses of the object, search for the contact points necessary
to hold the object in each pose, and determine a trajectory
to topple the object over. Learning-based approaches have
been developed to predict object motions from just RGB
images [26], [27], [28], and to learn a toppling policy
from demonstrations [29]. These approaches do not require
knowledge of the object geometry, but also only operate
on 2D extruded shapes. In this paper, we present a model
which predicts the toppling behavior of pushes in arbitrary
directions for 3D objects beyond 2D extrusions.

III. PROBLEM STATEMENT

Given a rigid polyhedral object, our goal is to find a
sequence of topple actions for a point pusher to topple the
object to a new pose with maximal suction grasp reliability.
We formulate the toppling problem as a Markov Decision
Process (MDP) and present a model for the reliability of a
topple action under uncertainty to act as the state transition
function in the MDP.

A. Assumptions

We make the following assumptions:
1) Known object geometry (defined by a two-manifold

triangular mesh) and center of mass.
2) The object rests in a stable pose [30] on a planar

surface.
3) The object has a constant friction coefficient across the

toppling edge and at each contact point. The choice of
friction coefficient is described in Section VI-B.

4) The object’s pressure distribution is modelled as two
point contacts on the endpoints of the toppling edge.

5) Quasi-static physics (i.e., inertial terms are negligible).
6) The forces and torques applied by the point pusher

are consistent with the point contact with friction
model [31].

B. Definitions

1) State: Let xt = (O, To) ∈ X represent the state of
the object at time t. O represents the object’s geometrical
properties, material properties, and center of mass, and To
represents the stable resting pose of the object.

2) Topple Action: Let ut = (p,q) ∈ U be the linear
trajectory of the point pusher manipulator in 3D space
between the start point p = (x, y, z) and the end point
q = (x′, y′, z′).

3) Topple Reliability: Let P[xt+1|xt,ut] be the proba-
bility that the object topples into state xt+1 when the robot
executes action ut. The probability that the object topples to
a different pose is P[xt+1 6= xt|xt,ut].

4) Rewards: The reward for executing each topple action
is 0. After executing all topple actions, the robot gets a
reward Vs(xT ), the predicted reliability of the best accessible
suction grasp.

C. Objective

Our ultimate goal is to develop a policy which plans a
sequence of actions {ui}Ti=1 that maximizes the reliability
of the best available grasp at time T . For the purpose of
this analysis, the policy picks a fixed time horizon trajectory,
and executes “no-op” actions ∅ if it predicts no action will
increase access to suction grasps.

max
u1..T

E [Vs(xT )]

s.t. ut ∈ U ∪ {∅}
To achieve this goal, we develop a model to robustly

estimate the transition distribution P[xt+1|xt,ut] to compute
the expected reward for the toppling MDP under uncertainty
in contact point position, friction coefficients, and push
direction. This formulation differs from the standard MDP
formulation in that the reward is only applicable for the final
action.

IV. TOPPLING MODEL

We develop a quasi-static models to estimate the topple
reliability for a given contact point and push direction. We
define the base of the object to be the convex hull of the
object’s vertices touching the workspace. For each edge



Fig. 2: Illustration of the forces acting on the object. The
point pusher produces a wrench according to the force ff
and the moment arm rf , defined between the contact point
and its projection on the edge. Gravity produces a wrench
according to the gravitational force fg and the moment arm
rg , defined between the center of mass and its projection
onto the edge.

on the base, we check the following three conditions, to
determine if ut will topple the object.

1) Contact Slip: The point pusher does not slip on the
object.

2) Workspace Slip: The contact between the toppling
edge and the workspace can resist the wrench applied
by the point pusher.

3) Minimum Push Force: The wrench applied by the
point pusher has a magnitude large enough to rotate
the object over the given edge.

If multiple edges satisfy these conditions, the model pre-
dicts the object will topple over the edge which requires the
least force applied by the point pusher. We then use quasi-
static analysis to predict the pose of the object after it topples
over the predicted edge [30].

The model presented in this section expands on the model
by Lynch et al. [5] by using the Friction Limit Surface [32] to
predict planar rotations and Monte Carlo sampling to predict
topple reliability under uncertainty.

A. Model Defintions

We formally describe the conditions for toppling with the
the following quantities, as shown in Figure 2 and 3.

1) Toppling Edge: sn = ny0 + (1 − n)y1, ∀n ∈ [0, 1],
the parametrized line representing the toppling edge.

2) Instantaneous Velocity Vectors: v̂(sn), the unit instan-
taneous velocity vector at each point along the toppling edge
of the object.

Fig. 3: (a) The topple action produces unit velocity vectors
v̂(sn) across the toppling edge, which the object-workspace
interaction resists via its pressure distribution p(sn). The
coordinate frame origin is at the projection of the center
of mass onto the toppling edge, and the y-axis is parallel
to the toppling edge. (b) and (c) demonstrate the dichotomy
between the maximal ft (b) and τz (c) the object can resist,
depending on the direction of v̂(sn).

3) Pressure Distribution: p(sn), the pressure distribution
of the object along the toppling edge, determined by the
distribution of the object’s mass and geometry along the
toppling edge.

4) Contact Point: cf , the point where the point pusher
contacts the object.

5) Forces: ff and fg , the forces applied to the object by
the point pusher and gravity, respectively.

6) Friction Coefficients: µf and µT , the coefficients of
friction of the object-point pusher and the object-workspace
contacts, respectively.

7) Friction Wrench: τz and ft, the torques around the z-
axis and frictional force that the object-workspace contact
exerts on the object, illustrated in Figure 3.

8) Moment Arms: rf and rg , the moment arms between
the push contact point and the toppling edge, and the center
of mass and the toppling edge, respectively.

B. Condition 1: Contact Slip
If the point pusher slips on the contact point, the proposed

quasi-static model predicts it will not be able to apply the
required force to topple the object. The point pusher will not
slip on the object as long as the it presses on the object in
a direction within the object’s friction cone at the point of
contact. [

(ff )x′ (ff )y′ (ff )z′
]T

= Tcff√
(ff )2

x′ + (ff )2
y′ ≤ µf (ff )z′



Tc ∈ SE(3) is the rigid transformation from the world
coordinate system to the coordinate system defined at the
contact point cf . (ff )x′ , (ff )y′ , (ff )z′ are the x, y, and z
components of ff relative to a coordinate frame defined at
the contact point.

C. Condition 2: Workspace Slip

If the object slips either tangentially on the workspace or
rotationally along an axis perpendicular to the workspace,
the force applied at the contact point will result in the
object moving in the plane instead of toppling. To determine
whether a predicted push will topple the object or cause the
object to slip on the workspace, we apply the friction limit
surface model described in [32]. The friction limit surface
describes the set of wrenches the object-workspace contact
can resist before the object slips on the workspace. If the
wrench applied by the point pusher is within this set of
resistable wrenches, the object will topple.

We can integrate the infinitesimal forces applied by the
object along the toppling edge to find the tangential force ft
and torque around the z-axis τz which the object-workspace
contact can resist due to friction:

ft = −
∫ 1

n=0

µT v̂(sn)p(sn)dn

τz =

∫ 1

n=0

µT ||sn × v̂(sn)||2p(sn)dn

The tangential force that the object-workspace contact
can resist is maximized when v̂(sn) is constant across the
toppling edge (Figure 3b), and the torque around the z-axis
is maximized when the instantaneous velocities all produce
torques in the same direction around the z-axis (Figure 3c),
where Fn = mg.

||ft||2 ≤ µTFn

τz ≤
∫ 1

n=0

µT ||sn||2p(sn)dn

≤ (τz)max

For our experiments, we assume the object’s pressure
distribution is defined as two point masses on the endpoints
of the toppling edge, though other distributions can be
substituted. In this case, (τz)max = µTFn

2 [y1 + y0].
We approximate the set of wrenches the friction contact

can exert (the Friction Limit Surface) with an ellipse in
wrench space [32], defined by the maximum tangential force
and rotational torque:

||ft||22
(µTFn)2

+
τ2
z

(τz)2
max

≤ 1

D. Condition 3: Minimum Push Force

The applied force produces a torque around the toppling
edge. If the magnitude of this torque is less than the
magnitude of the torque caused by gravity, then the object
will not topple. An object such as the one in Figure 2 will
rotate at the toppling edge if ||rf×f ′f ||2 ≥ ||rg×fg||2, where
f ′f is the component of ff orthogonal to the toppling edge.

Fig. 4: Predicted reliability of each toppling action. The color
of each contact point in the left column corresponds to the
model’s predicted probability that the object will reach the
pose in the right column when pushed normal to the surface
at each contact point. Contact points with 0% predicted
reliability are omitted.

E. Predicting Toppling Final Resting Pose

If the conditions in Sections IV-B, IV-C, and IV-D are
satisfied, we predict the object’s pose after toppling by
rotating the object around the toppling edge until either:

1) The center of mass passes over the toppling edge (i.e.
the apex of the topple). After this point, the object is
free to fall unaided. We use the analysis from Goldberg
et al. [30] to predict which face the object settles on
after it falls.

2) The topple is blocked before it reaches the apex of the
topple (i.e. some point other than the toppling edge
touches the workspace). In this case, we return the
object to its original pose.

All trials which fail to topple the object over any edge are
mapped to the starting pose. Figure 4 shows the predicted
poses of an object when toppled over three edges from
various candidate points.

F. Toppling Reliability

To account for uncertainty in gripper pose and object geo-
metric and material properties, we introduce a robust metric
for computing toppling probabilities. We consider 100 topple
trials for each candidate contact point, with Gaussian noise
added to the contact position, push direction, and friction
coefficients: µT ∼ N (0.43, 0.1), µf ∼ N (0.98, 0.2) cf ∼
N (cf , 5.05 ·10−4 ·I), and ff ∼ N (ff , 0.055 ·I). Section VI-
B describes how we choose these noise distributions. These



trials serve as Monte-Carlo estimates for the true underlying
toppling distribution. Figure 4 illustrates these Monte-Carlo
estimates for each sampled contact point on the object, as
well as the predicted final pose of the object if toppled at
each contact point.

We sum the probabilities of toppling over edges which
result in the same final pose. We label these probabilities
the Toppling Distribution P[xt+1|xt,ut], defined in Section
III-B, where xt is the current state, ut is the topple action,
and xt+1 is the predicted final pose of the object.

G. Toppling Model Baselines

The presented model expands on prior work by predicting
planar rotations, and predicting the toppling reliability under
uncertainty. To evaluate the utility of these additions, we
compare the model against three baselines:

1) Baseline: The baseline predicts whether a 3D object
will topple over any edge or slide tangentially on the
workspace, similar to prior work.

2) Baseline + Rotations: This model applies the friction
limit surface to the baseline to additionally predict
planar rotations.

3) Baseline + Robustness: This model adds Monte Carlo
sampling to the baseline to predict the reliability of
a topple action under uncertainty in pose, friction
coefficients, and push direction.

V. TOPPLING POLICIES

The goal of the policies in this section is to pick a
toppling action to transition 3D objects into poses with
improved grasp accessibility. We use the probabilities from
the Toppling Model in Section IV to predict the pose of
objects after each topple action ut and use the grasp analysis
from Mahler et al. [7] to predict suction grasp accessibility.
We compare the proposed policy against Max-Height and
Greedy Baselines.

A. Max-Height Baseline

To evaluate the utility of modelling the toppling behavior
of objects in attempting to increase suction grasp access, we
develop a baseline with no knowledge of the toppling transi-
tion probabilities. However, the policy does have knowledge
of the predicted grasp accessibility of the object in each
pose. This baseline picks the highest possible point on the
object’s surface with a surface normal within 15◦ of the
workspace and pushes at this point. The Max-Height policy
executes “no-ops” if the object is in the pose with the highest
reliability of accessible grasps.

B. Greedy Baseline

The Greedy Baseline uses the proposed toppling model
in Section IV to compute the topple probabilities for only
the current time-step and picks the action which maximizes
the expected suction grasp reliability Vs(xt+1) immediately
after the topple action:

π(xt) = argmax
ut

(
Ext+1∼P[xt+1|xt,ut] [Vs(xt+1)]

)

The policy executes “no-ops” if Vs(xt+1) ≤ Vs(xt) ∀xt+1 ∈
P[xt+1|xt,ut]. The Greedy Baseline benefits from fast
computation times because it only computes the actions for
the current time-step, but does not account for sub-optimal
topples that could allow for better future topple actions.

C. Value Iteration Policy

The Value Iteration Toppling Policy considers sub-optimal
poses by assigning a value to each pose defined as the max-
imum suction grasp reliability for any pose reachable with
linear topple actions, according to the transition probabilities
generated by the model in Section IV.

The policy generates a graph of the toppling MDP, such as
the one in Figure 5, where the nodes represent the object’s
stable poses, and the edges represent topple actions. The
policy assigns each action a value QT (xt,ut), based on the
discounted suction grasp reliability of future object states
following action ut, using Value Iteration [33]:

QT (xt,ut) = Ext+1∼P[xt+1|xt,ut] [VT (xt+1)]

VT (xt) = max
(
Vs(xt), γ max

ut

QT (xt,ut)

)
We choose γ = 0.95 as our discount factor. After com-

puting Value Iteration, the policy executes the action with
the highest q-value QT (xt,ut), or “no-ops” if VT (xt+1) ≤
VT (xt) ∀xt+1 ∈ P[xt+1|xt,ut].

VI. RESULTS

A. Toppling Dataset Generation

Our goal was to predict the toppling behavior of objects
with dense samples of contact points across the object’s
surface and with a high number of Monte-Carlo trials per
sampled contact point. Since this can be computationally
expensive, we pre-computed the topple probabilities and final
poses for every stable pose of the desired objects, and store
these values in a database. The pre-computation allowed us to
quickly retrieve the toppling probabilities for a wide variety
of objects.

We generated a dataset of 1000 candidate topple points
on 189 objects in 1257 stable poses, for a total of 1,257,000
candidate topple points. We chose objects which satisfy the
following conditions: 1) The object has a stable pose with
high grasp reliability (> 50%) and a stable pose with low
grasp reliability (< 25%) and 2) the object’s center of mass is
higher in the high grasp reliability pose than in the low grasp
reliability pose. We chose a complex set of objects whose
convex hulls had an average of 1437 faces. The average time
to compute the toppling probabilities and final poses per
object stable pose is 40.47 seconds on a desktop computer
running Ubuntu 16.04 with a 3.6 GHz Intel Core i7-6850k
CPU.

B. Physical Model Experiments

To compare the predictions of the model and the baselines
in Section IV-G with empirical outcomes, we ran physical
experiments of topple actions on the seven 3D printed objects



Fig. 5: Toppling Graph: The object in Figure 4 starts at Pose
0. All poses that are attainable via linear topple actions are
shown. The border color corresponds to the reliability of the
best available suction grasp of the object in the pose, and
the edges are labelled with the probability of success for the
best linear topple action.

shown in Figure 6. We executed 10 topple actions per object
and repeated each topple action 10 times.

We placed the 3D printed objects in front of an ABB YuMi
robot on a planar workspace. The robot acquired a 3D point
cloud of the mesh using a Photoneo PhoXi depth sensor, and
used the Super4PCS algorithm [34] to match the pose of the
object in simulation to the pose of the object in front of the
robot.

We then chose a topple action and recorded the pose of the
object before and after the action. Since the predicted topple
reliability is 0 at most contact points, we sampled actions
with probabilities proportional to the topple probabilities
from Section IV-F, where ε = 10−4 to get topple actions
with a broader range of reliabilities.

P[ut] =
P[xt+1 6= xt|xt,ut] + ε∑

u′
t
P[u′t]

1) Predicting Whether the Object Will Topple: For each
model and baseline, we considered 100 sets of noise dis-
tributions to perturb the contact point position, friction co-
efficients, and push direction. We performed 6-fold Cross
Validation, each with a different object held out, so that the
model comparison is not dependent on the choice of noise
distributions. We averaged the performance on the held out
object for each fold.

Topple Predictions
Model mAP
Baseline 0.741
Baseline + Rotations 0.752
Baseline + Robustness 0.852
Robust Model 0.848

TABLE I: Mean Average Precision (mAP) for each model’s
prediction of toppling into any new pose, based on the
empirical data collected. We perform k-fold cross validation,
and average the mAP of each of the held-out folds.

Final Pose Predicitions
Model TV mAP
Baseline 0.424 0.412
Baseline + Rotations 0.494 0.381
Baseline + Robustness 0.247 0.568
Robust Model 0.211 0.589

TABLE II: Total variation distance (TV) and mean Average
Precision (mAP) between each model and empirical toppling
distributions. We perform 6-fold cross validation, and aver-
age the total variation and mAP of each of the held out
folds. Model distributions with low total variation distance
are consistent with the empirical distribution.

Table I shows how well each model and baseline was
able to predict whether a given push will topple the object
into a pose other than the start pose, when compared against
empirical data.

2) Predicting the Object Pose Distribution: We also com-
puted an empirical distribution of final poses and estimated
distributions of final poses from the proposed model and
the baseline models. We computed the total variation dis-
tance between each model’s predictions and the empirical
distribution to quantify the accuracy of the proposed model’s
predicted toppling behavior. We averaged the total variation
distance across every state and action:

TV =
1

|X ||U|
∑
xt∈X
ut∈U

sup
xt+1∈X̄

∣∣∣P̂[xt+1|xt,ut]−P[xt+1|xt,ut]
∣∣∣

In the physical experiments, X represents every initial
state, U represents the actions executed, and X̄ represents
the set of 10 final poses the object reaches.

Again, we consider 100 models, each with different noise
distribution parameters and performed 6-fold Cross Valida-
tion. Table II shows both the mean Average Precision and
Total Variation distance averaged over the held out sets for
the best model in each of the six folds.

C. Simulated Policy Experiments

To test the policies’ abilities to effectively use toppling to
increase suction grasp accessibility, we ran all policies in a
simulated environment and recorded the predicted reliability



Fig. 6: The objects used in physical experiments.

Fig. 7: Average difference in suction grasp reliability after
each policy in Section V executes topple actions on a
randomly-placed mesh in 3654 simulations. The planning
times are the average planning time per action of each policy.

of accessible suction grasps before and after each policy
finished execution. In each of the 20,000 trials, we dropped
a random mesh into a simulated environment into a random
pose, weighted according to its stable pose probability [30],
used each policy to plan an action on the object, and used
the Toppling Model to forward simulate the action. We drew
a next state according to P[xt+1|xt,ut].

Of these 20,000 trials, we found toppling to be useful in
3654 trials, i.e., the object was not already dropped in the
pose with the highest suction grasp access and there existed a
topple action which was predicted to increase suction grasp
reliability. The performance of each policy in these useful
trials is illustrated in Figure 7. These results suggest that
the situations in which toppling is useful is limited, but that
toppling can be effective in uncovering robust grasps.

While pushing the object near the top of the object
can marginally improve suction grasp access, the Greedy
Baseline and Value Iteration Policy are able to increase the
reliability of suction grasps by an absolute 25.5% and 28.4%,
respectively, over the Max-Height Baseline. While the the
Value Iteration Policy achieves the highest increase in access,
it comes at the cost of planning time, as it has to perform
more database retrievals, and compute value iteration on the
toppling graph at run-time.

Figure 5 exemplifies a situation in which the Value Itera-
tion Policy outperforms the Greedy Baseline. The Greedy
Baseline attempts a suction grasp at Pose 0, since the
predicted grasp reliability of the object in all immediately
reachable poses is the same as the predicted grasp reliability
of the object in Pose 0. However, the Value Iteration Policy
recognizes that toppling twice can lead to a state with 100%
grasp reliability.

Fig. 8: Failure modes from physical experiments. (a) Mo-
mentum causes the object to roll further than predicted (b)
the model correctly predicts the point pusher will slip, but
the object still topples as the point pusher slips (c) the model
correctly predicts the object will slip on the workspace, but
the object first rotates then topples.

D. Toppling Model Failure Modes

To evaluate our model beyond our analysis, we examined
examples in which the model significantly differs from
physical outcomes. The three main limitations we identified
with the proposed model are illustrated in Figure 8. In all
three situations, the model is unable to predict the behavior
because of the quasi-static assumption. In Figure 8a, the point
pusher is able to topple the object, but momentum causes the
object to roll past the predicted pose. The proposed model
assumes quasi-statics during the rolling phase of the topple.
In Figure 8b the topple action causes the object to initially
slip on the workspace and then topples. The proposed model
predicts a low topple reliability for this topple action, as it
does not model dynamics. In a related scenario, the point
pusher slips on the object surface in Figure 8c, but still
topples the object. The model assumes the object will not
topple if the point pusher slips on the object, so it incorrectly
predicts this topple action fails.

VII. DISCUSSION AND FUTURE WORK

In this paper, we present a model to robustly predict
the toppling behavior of rigid 3D polyhedral objects to
increase access to vacuum suction grasps. We compare the



proposed model to baselines without rotations and topple
reliability predictions and evaluate the utility of the model
in a Value Iteration Toppling Policy to increase suction grasp
accessibility.

In future work, we would like to relax the model’s
assumptions, such as the approximation of the object’s
pressure distribution as two point masses at the endpoints of
each edge. We would also like to explore non-linear topple
motions. We also hope to explore more complex toppling
policies such as multi-arm topple actions, such as the one
presented by Yamashita et al. [24], and composite toppling
and planar pushing policies. Finally, we would like to explore
pre-computing a dataset of the topple Q-Values, to decrease
planning time for the Value Iteration Policy.

VIII. ACKNOWLEDGEMENTS

This research was performed at the AUTOLAB at UC
Berkeley in affiliation with the Berkeley AI Research (BAIR)
Lab, Berkeley Deep Drive (BDD), the Real-Time Intelligent
Secure Execution (RISE) Lab, and the CITRIS “People and
Robots” (CPAR) Initiative. The authors were supported in
part by donations from Siemens, Google, Toyota Research
Institute, Autodesk, Knapp, Honda, Intel, Comcast, Hewlett-
Packard and by equipment grants from PhotoNeo, NVidia,
and Intuitive Surgical. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the Sponsors. We thank our colleagues who provided
helpful feedback and suggestions, in particular Daniel Seita
and Kate Sanders. We also thank Matthew Matl and David
Gealy for their help developing the YuMi pushing tool.

REFERENCES

[1] M. Danielczuk, J. Mahler, C. Correa, and K. Goldberg, “Linear push
policies to increase grasp access for robot bin picking,” in 2018 IEEE
14th International Conference on Automation Science and Engineering
(CASE), pp. 1249–1256, IEEE, 2018.

[2] L. Y. Chang, S. S. Srinivasa, and N. S. Pollard, “Planning pre-grasp
manipulation for transport tasks,” in Robotics and Automation (ICRA),
2010 IEEE International Conference on, pp. 2697–2704, IEEE, 2010.

[3] M. Dogar and S. Srinivasa, “A framework for push-grasping in clutter,”
Robotics: Science and systems VII, vol. 1, 2011.

[4] K. M. Lynch, “Inexpensive conveyor-based parts feeding,” Assembly
Automation, vol. 19, no. 3, pp. 209–215, 1999.

[5] K. M. Lynch, “Toppling manipulation,” in ICRA, pp. 2551–2557, 1999.
[6] T. Zhang, G. Smith, R.-P. Berretty, M. Overmars, and K. Goldberg,

“The toppling graph: Designing pin sequences for part feeding,” in
Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE Inter-
national Conference on, vol. 1, pp. 139–146, IEEE, 2000.

[7] J. Mahler, M. Matl, X. Liu, A. Li, D. Gealy, and K. Goldberg, “Dex-
net 3.0: Computing robust robot vacuum suction grasp targets in
point clouds using a new analytic model and deep learning,” in IEEE
International Conference on Robotics and Automation (ICRA), IEEE,
2018.

[8] K. M. Lynch, “The mechanics of fine manipulation by pushing,” in
Robotics and Automation, 1992. Proceedings., 1992 IEEE Interna-
tional Conference on, pp. 2269–2276, IEEE, 1992.

[9] K. M. Lynch and M. T. Mason, “Controllability of pushing,” in
Robotics and Automation, 1995. Proceedings., 1995 IEEE Interna-
tional Conference on, vol. 1, pp. 112–119, IEEE, 1995.

[10] K. M. Lynch and M. T. Mason, “Stable pushing: Mechanics, controlla-
bility, and planning,” The International Journal of Robotics Research,
vol. 15, no. 6, pp. 533–556, 1996.

[11] R. C. Brost, Planning robot grasping motions in the presence of
uncertainty. Carnegie-Mellon University, The Robotics Inst itute,
1985.

[12] K. Y. Goldberg, “Orienting polygonal parts without sensors,” Algo-
rithmica, vol. 10, no. 2-4, pp. 201–225, 1993.

[13] J. C. Trinkle and J. J. Hunter, “A framework for planning dexterous
manipulation,” in Proceedings. 1991 IEEE International Conference
on Robotics and Automation, pp. 1245–1251, IEEE, 1991.

[14] M. A. Peshkin and A. C. Sanderson, “Planning robotic manipulation
strategies for workpieces that slide,” IEEE Journal on Robotics and
Automation, vol. 4, no. 5, pp. 524–531, 1988.

[15] M. Brokowski, M. Peshkin, and K. Goldberg, “Optimal curved fences
for part alignment on a belt,” Journal of Mechanical Design, vol. 117,
no. 1, pp. 27–35, 1995.

[16] A. F. van der Stappen, R.-P. Berretty, K. Goldberg, and M. H.
Overmars, “Geometry and part feeding,” in Sensor Based Intelligent
Robots, pp. 259–281, Springer, 2002.

[17] M. T. Zhang and K. Goldberg, “Gripper point contacts for part
alignment,” IEEE Transactions on Robotics and Automation, vol. 18,
no. 6, pp. 902–910, 2002.

[18] M. T. Zhang and K. Goldberg, “Designing robot grippers: optimal edge
contacts for part alignment,” Robotica, vol. 25, no. 3, pp. 341–349,
2006.

[19] B. Carlisle, K. Goldberg, A. Rao, and J. Wiegley, “A pivoting gripper
for feeding industrial parts,” in ICRA, pp. 1650–1655, 1994.

[20] A. Rao, D. J. Kriegman, and K. Y. Goldberg, “Complete algorithms
for feeding polyhedral parts using pivot grasps,” IEEE Transactions
on Robotics and Automation, vol. 12, no. 2, pp. 331–342, 1996.

[21] A. Holladay, R. Paolini, and M. T. Mason, “A general framework for
open-loop pivoting,” in Robotics and Automation (ICRA), 2015 IEEE
International Conference on, pp. 3675–3681, IEEE, 2015.

[22] Y. Hou, Z. Jia, and M. T. Mason, “Fast planning for 3d any-pose-
reorienting using pivoting,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA), pp. 1631–1638, IEEE, 2018.

[23] Y. Aiyama, M. Inaba, and H. Inoue, “Pivoting: A new method of
graspless manipulation of object by robot fingers,” in Intelligent
Robots and Systems’ 93, IROS’93. Proceedings of the 1993 IEEE/RSJ
International Conference on, vol. 1, pp. 136–143, IEEE, 1993.

[24] A. Yamashita, T. Arai, J. Ota, and H. Asama, “Motion planning of
multiple mobile robots for cooperative manipulation and transporta-
tion,” IEEE Transactions on Robotics and Automation, vol. 19, no. 2,
pp. 223–237, 2003.
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