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Abstract— Image instance segmentation plays an important
role in mechanical search, a task where robots must search for
a target object in a cluttered scene. Perception pipelines for this
task often rely on target object color or depth information and
require multiple networks to segment and identify the target
object. However, creating large training datasets of real images
for these networks can be time intensive and the networks
may require retraining for novel objects. We propose OSSIS,
a single-stage One-Shot Shape-based Instance Segmentation
algorithm that produces the target object modal segmentation
mask in a depth image of a scene based only on a binary
shape mask of the target object. We train a fully-convolutional
Siamese network with 800, 000 pairs of synthetic binary target
object masks and scene depth images, then evaluate the network
with real target objects never seen during training in densely-
cluttered scenes with target object occlusions. OSSIS achieves
a one-shot mean intersection-over-union (mIoU) of 0.38 on
the real data, improving on filter matching and two-stage
CNN baselines by 21% and 6%, respectively, while reducing
computation time by 50 times as compared to the two-stage
CNN due in part to the fact that OSSIS is one-stage and does
not require pairwise segmentation mask comparisons.

I. INTRODUCTION

Instance segmentation, the task of producing pixelwise
masks of all objects within a scene image, can help a
robot spatially and visually process its environment prior
to decision-making. Combining an instance segmentation
algorithm with a target recognition algorithm can further
allow a robot to recognize a goal object among a cluttered
scene. Manipulating objects in the scene to uncover and
extract the target object, a problem called mechanical search,
and robotic pick-and-place are two examples in which in-
stance segmentation plays an important role [7, 20, 26]. In
these tasks, segmenting the target object can be the first
step to manipulating it. Instance segmentation masks can
be further distinguished as modal (showing a view of the
object within the scene, respecting occlusions) or amodal
(showing the entire object unobstructed) [19]. Amodal-to-
modal segmentation is the task of predicting the modal mask
of an object given its amodal mask.

Image segmentation within the context of robotics has
been approached with a variety of sensory data, including
RGB, depth, RGB-D, tactile, and LiDAR data [8, 14, 22,
49]. To reduce data collection and processing costs, sim-to-
real transfer and one-shot methods were developed. Sim-to-
real methods train only or mostly on simulated images and
thereby reduce dependence on large-scale real datasets. One-
shot methods generalize beyond the training object classes,
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Fig. 1: Shape-based instance segmentation of a packaged
dog toy (top-left) within a scene (top-middle). The target
binary shape mask (bottom-left) and scene depth image
(bottom-middle) are passed into the network, which outputs
the blue segmentation mask (bottom-right). For comparison,
the ground-truth segmentation mask is in green (top-right).
Although the package has a different scale, 2D position, and
rotation in the scene, as well as being heavily occluded by
other objects, the network is able to segment it using its
shape mask.

and can additionally prevent failure due to small deviations
in an object’s appearance.

As compared to these methods, we additionally increase
efficiency (i.e., reduce the number of network parameters)
and train with a weaker form of supervision – binary shape
masks without any texture or color information. We introduce
one-shot shape-based instance segmentation, in which a
network receives only a binary mask of a previously unseen
target object shape and a depth image of a heap of objects as
input and predicts a modal segmentation mask for the target
object. Furthermore, to ease the burden of generating 3D
rotated targets through a depth camera or simulator, the bi-
nary masks are generated from existing amodal segmentation
masks mirroring the image.

We argue that training a network in this way minimizes
data labeling cost and guides both domain and object class
generalization. Additionally, stronger forms of supervision
such as color or depth images from online retailers can be
thresholded to create the binary mask input, using standard
foreground-background segmentation techniques [11]. This
enables its utilization in automation pipelines such as me-
chanical search [7].
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This paper makes two contributions:
1) One-Shot Shape Instance Segmentor (OSSIS), an al-

gorithm using a Siamese-U-Net [31] trained on 800k
synthetic depth images and amodal target shape masks
to estimate the target modal segmentation mask in a
scene of real objects.

2) Experiments comparing OSSIS to a filter matching
baseline and two-stage MaskRCNN + Siamese match-
ing baseline, as well as ablation studies exploring how
the augmentations to both the dataset and algorithm
affect quantitative performance and computational ex-
pense. The algorithm outperforms the filter matching
baseline by 21% and the two-stage CNN by 6% in
mean intersection-over-union on 6000 images derived
from the WISDOM-Real test dataset.

II. RELATED WORK

The approach taken in this paper builds on previous
work in the fields of convolutional encoder-decoder neural
networks for instance segmentation, image dataset augmen-
tation, and sim-to-real training.

A. Instance Segmentation Methods

Efforts in the field of computer vision towards image
segmentation began with region and graph based methods
[11, 12, 25, 33]. Commonly, these methods partition the
image into subsets of similar intensity or features. Convo-
lutional encoder-decoder neural networks have been more
recently found to be effective in localizing and segmenting
objects for applications such as autonomous driving and
robot grasping [2, 6, 24]. Some networks rely first on a
bounding box generator before performing segmentation [14,
23, 35], while others output a confidence map over all pixels
in the image and threshold the results to produce the final
masks [2, 17, 32]. We leverage the computational advantage
of the latter approach, where only one forward pass through
a network is required to both localize and segment a target
object.

B. Binary Masks as Weak Supervision

Binary masks have been commonly used as a form of weak
supervision for 3D reconstruction from single or multiple
object views [4, 30]. Yan et al. [50] introduce a loss based
on consistency of silhouettes from different perspectives, and
Gwak et al. [13] extend this result by adding an adversarial
constraint. Tulsiani et al. [46] directly use binary masks or
noisy depth images as training inputs, learning a network
that can reconstruct 3D objects from these single-view inputs
based on a ray consistency loss across multiple views during
training. For instance segmentation, Eitel et al. [9] and
Pathak et al. [34] use binary masks as part of a self-
supervised pipeline that leverages push and grasp actions
to generate training data and improve segmentation across
actions. In contrast to these works, we aim to generate our
labels entirely in simulation without interaction and focus on
segmenting unseen target objects.

C. Sim-to-Real Transfer

Since collecting data for high-quality real world visual
inference can often be expensive and time-consuming [27],
training on datasets created in simulation and transferring to
the real domain requires less manual labor and time [15, 37,
38, 41]. Several approaches have been taken to both decrease
the generalization gap between sim and real performance
when training on a simulated dataset. In the process of
sim-to-real fine-tuning, a network is first trained on a large
simulated dataset and then additionally trained on a small real
dataset [1, 48]. Domain randomization randomly modifies
lighting, pose, and textures in the simulated training dataset
to bridge the sim-to-real gap [43, 44]. We choose inputs
that have been shown to transfer easily from sim-to-real [8,
29, 39] and augment our dataset with target mask rotations,
as binary masks are not affected by changes in lighting or
texture.

D. One-Shot Object Detection and Segmentation

In a similar vein, generalizing to previously unseen object
classes for detection or segmentation can be useful when data
is limited. One-shot methods learn from training datasets that
may not contain all the object classes in the evaluation set.
Recently, there has been significant interest in both one-shot
object detection [16] as well as few-shot [10] or one-shot
instance [31, 32] or semantic [36] segmentation. However,
in contrast to these methods, we do not leverage a large
dataset of labeled RGB images. Instead, we train only on
synthetic data with a weaker form of supervision.

Fine-tuning can also be effective for this problem, but
many one-shot methods in segmentation omit this for the
sake of efficiency and reduced training iterations [40, 47].
We mitigate the need for fine-tuning by using binary shape
masks as targets, and depth images to represent scenes as
in Mahler et al. [28] and Johns et al. [18].

III. PROBLEM STATEMENT

Given a binary image of a target object and a depth image
containing a single instance of that object, our goal is to
find the set of all pixels in the depth image that correspond
to a subset of the target object binary mask. Note that the
set of pixels in the depth image may be scaled, rotated, and
translated as compared to the corresponding pixels in the
target object mask.

A. Definitions

• Target Object: The object ot to be segmented, specified
as a binary image It ∈ {0, 1}Ht×Wt of the singulated
target object.

• Scene: A simulated or physical heap of m objects,
containing the target object ot and m − 1 distractor
objects o1, . . . om−1.

• Observation: A depth image Is ∈ RHs×Ws
+ taken from

a camera C at pose TC .
• Target Mask: The set of pixels Mt belonging to the

target object in the observation.



Fig. 2: Algorithm Overview: The network takes in a binary shape mask of the target object and a depth image, and produces
the modal segmentation mask of the target object in the depth image. We augment the target shape mask before training by
rotating the mask randomly between 0 and 360 degrees, and treat each rotated mask as an individual training point.

B. Assumptions

• The set of pixels in the depth image that belong to the
target image is not empty (i.e., some part of the target
object is visible in the scene).

• There is only one instance of the target object in the
scene.

Then, the objective for target object modal instance seg-
mentation is to find a function that estimates the segmen-
tation mask from the scene image and target mask, f :
(Is, It) → M̂t, such that the pixelwise distance between
the estimated segmentation mask M̂t and ground-truth seg-
mentation mask Mt is minimized. Specifically, we employ
the commonly used intersection-over-union metric (IoU) to
quantify pixelwise distance between M̂t and Mt, defined
as:

IoU(M̂t,Mt) =

∣∣∣M̂t

⋂
Mt

∣∣∣∣∣∣M̂t

⋃
Mt

∣∣∣ (1)

IV. METHODS

A. Dataset Generation

We use the WISDOM-Sim and WISDOM-Real datasets to
generate a simulated training dataset, a simulated one-shot
test dataset, and real one-shot test dataset [8]. The one-shot
datasets contain only scenes and objects that have not been
seen during training.

The training dataset consists of 250k depth image, amodal
target mask, and ground-truth modal segmentation mask
triples (Is, It,Mt) from the WISDOM-Sim dataset [8]. As
stated by Danielczuk et al., there are an average of 6.5
object instances per scene image, which yields approximately
325,000 total instances across the 50,000 image dataset.
Each object is a member of the Thingiverse object set. We
then remove instances where the target object is completely
occluded in the scene. Triplets are randomly assigned to the
training and validation splits in an 80:20 ratio, leaving us
200k images for training.

The scene images are scaled and cropped such that Ws =
Hs = 384 to include all objects in the bin and minimize

downsampling. For each scene image, we use the modal
segmentation masks as ground truth labels. To generate the
target shape masks, we collect the amodal segmentation
masks for each visible object and apply a rotation between 0
and 360 degrees in the 2D plane uniformly at random to each
mask. This process generates m triples per image; one for
each visible object in the scene, with all other m−1 objects
acting as distractors. The amodal target mask is scaled such
that Ht = Wt = 128, which allows for faster computation.

To evaluate model performance, we create a simulated
test dataset comprised of 12.5k similarly-generated triplets
containing only scenes and objects that have not been seen
during training. This dataset allows evaluation of the model’s
one-shot performance. We also create a real test dataset
comprised of 2.4k real scenes and objects that are also unseen
during training. However, as amodal masks cannot be easily
determined even by humans from a scene image when there
are heavy occlusions, we use RGB images of the objects
in the scene singulated on a black background in one of
their stable poses. We then binarize the images to create the
input target mask for our algorithm. Note that this distinction
results in the real image one-shot task being much more
difficult than in simulation, as the modal segmentation mask
of the target object in the scene may not be a true subset
of the amodal target mask given as input (i.e., the target
may have an additional 3D rotation out of the image plane
from the input target mask). The real test dataset allows
evaluation both of the model’s one-shot performance, sim-
to-real transfer ability, and capacity to segment novel 3D
poses.

B. Dataset Augmentation

To improve the performance of the network on the sim-
ulated and real image test datasets, we augment our base
training dataset by rotating the amodal mask inputs. We
create R-rotated datasets for R = 1, 2, 4, where R = 1 de-
notes the base dataset. For our augmented datasets, we form
R data points per existing scene image, amodal mask and
modal segmask triplet by rotating the target object amodal
mask between 0 and 360 degrees uniformly at random R



times. For each rotated amodal mask, we store an unchanged
copy of the scene image and segmask as a new triplet. This
process results in two augmented datasets totaling 400k and
800k images, respectively. These augmentations expose the
model to a wider variety of amodal target poses in the 2D
plane. A key observation here is that rotations are the most
readily available augmentations to binary shape masks, since
techniques such as domain randomization would not affect
a texture-less and depth-less mask.

C. Training

We use a convolutional encoder-decoder which takes as
input a scene image and a target shape mask, and outputs a
modal target object segmentation mask. This is advantageous
because it preserves both the high and low level features of
input images. We employ a modified Siamese U-Net archi-
tecture used by Michaelis et al. [31], which was originally
introduced by Bromley and LeCun [5]. To better process
our larger scene images, we increase the number of layers
in the encoder by 1 to 6 and double the number of feature
maps to 784. We also insert a dropout layer with factor 0.1
after the last convolutional layer of the encoder to increase
amodal robustness. The fully convolutional encoder allows
for parallel computation of the low-level feature tensors from
the input images. As described by Michaelis et al, the final
output of the network is produced from feeding the inner
and outer products of these tensors into the decoder, which
is aided by skip connections to corresponding decoder layers.
This network produces a heatmap of predicted confidences
in the interval [0, 1] that each pixel belongs to the mask. To
produce the final binary segmentation we use a threshold of
0.3 on the heatmap, having optimized for mIoU on thresholds
over a range of 0.1 to 0.5 with a step size of 0.05.

The model is trained with the Adam stochastic optimiza-
tion method with default parameters and initial learning rate
of 0.0005 for 10 epochs on a standard 80-20 train-val split
of our simulated dataset [21]. On the base simulated dataset,
the network converges in approximately 12 hours with batch
size 10 on an NVIDIA Titan X GPU. Each forward pass of
the network takes 45 ms for a single real scene image and
target image pair (averaged over 1000 steps).

V. EXPERIMENTS

A. Metrics

We measure the effectiveness of each segmentation quanti-
tatively using the mean-intersection-over-union (mIoU) met-
ric, which is the IoU metric defined in Section III averaged
across predictions. We define one-shot sim mIoU and one-
shot real mIoU to be the network’s performance on the
simulated and real test sets, respectively. The first measures
the model’s generalization to unseen objects and the second
measures generalization to unseen objects and ability to
transfer from the sim to the real domain.

B. Baselines

We use both classical filter matching and two-stage CNN-
based methods as comparisons to evaluate the performance

Method OS Sim OS Real Runtime

Filter Matching 0.186 0.171 180 ms
Two-Stage CNN N/A 0.316 2.5 s
OSSIS (R=1, Mean) 0.357 0.250 45 ms
OSSIS (R=1, Max) 0.357 0.250 45 ms
OSSIS (R=4, Mean) 0.591 0.299 45 ms
OSSIS (R=4, Max) 0.591 0.381 45 ms

TABLE I: We compare OSSIS trained on datasets with
R = 1 and R = 4 rotations, as well as using the mean
and maximum IoUs across the 5 target images, to filter-
matching and two-stage CNN baselines using one-shot mean
intersection-over-union (mIoU) on both the simulated test
set and the real test set, both of which are entirely made
of objects unseen in training. The baselines have access to
depth and color target masks. In comparison, OSSIS only
makes use of target object shape information. OSSIS is better
able to compensate for target scale, rotation, and translation.
Additionally, OSSIS runs 4 times faster compared to filter
matching and over 50 times faster than the two-stage CNN.

and runtime of our model. These methods are chosen to
illustrate the difference in performance and evaluation speed
between non-CNN methods, two-stage CNN methods, and
our method.

The filter matching algorithm localizes the target object
within the image by measuring cosine similarity scoring for
each convolution [3, 42, 45]. The target mask is chosen from
the set of masks rotated by angles in [0, 360] with increments
of 10 degrees, such that it maximizes mIoU.

The CNN-based approach uses an implementation of SD
Mask-RCNN [8] to segment all objects in a given depth
scene and a Siamese matching network to select the mask
corresponding to the target object [7]. SD Mask-RCNN
closely follows the architecture of Mask-RCNN [14], but
is adapted for depth images and uses a lighter ResNet-35
backbone. As described by Danielczuk et al, the Siamese net-
work combines a fixed ResNet-50 head trained on ImageNet
with two dense layers and outputs a probability that two
input objects are the same. The Siamese network performs
pairwise comparisons between masks output by SD Mask-
RCNN to select the most similar target mask. To ensure
a fair one-shot comparison between methods, we split the
50 objects in the WISDOM-Real dataset randomly into 10
groups. Then, we train 10 instances of the Siamese network,
where for each we choose one of the 10 groups to be a
test group and the other 9 groups to be the training groups,
resulting in 45 train objects and 5 test objects for each
network. When testing, we evaluate each of the networks
on each instance of its corresponding 5 test objects in the
network and average IoU across all test instances from all
networks.

For the one-shot real test dataset, we use 5 images of
the target object from different views. For the two-stage
CNN, we report the IoU for the mask with the highest
match probability across all 5 views. For the filter-matching
baseline, we report the maximum IoU across the 5 images.



Fig. 3: Qualitative results from applying the algorithm on the test real depth image dataset. We include the color image as
well for visual clarity. The first three rows show the ability of the network to segment partially occluded and rotated target
objects at different scales. The final row displays a failure mode inherent to the shape-based approach of confounding two
similar shapes.

For OSSIS, we report mIoU both when taking the mean and
maximum IoU across the 5 images.

C. Results
We evaluate the filter-matching baseline and OSSIS trained

on simulated datasets with different numbers of target mask
rotations and report one-shot mIoU on both the simulated
and real test datasets in Table I. We also report one-shot
mIoU for the two-stage CNN baseline on the real test dataset.
OSSIS achieves a 21% improvement over the filter-matching
baseline and outperforms the two-stage CNN by 6% on
the real test dataset. There is little difference in the filter-
matching performance on sim and real images, because there
is no generalization gap for the filter matching algorithm
to bridge. OSSIS also successfully adapts to previously
unseen objects in the sim test dataset, with a low one-shot
generalization gap of under 4%. Additionally, OSSIS is 4
and 50 times faster than the filter matching and two-stage
CNN baselines, respectively, showing a large improvement in
efficiency during testing. The efficiency advantage of OSSIS
over the two-stage baseline is that OSSIS is one-stage, and
does not require pairwise comparisons to extract the target
object from the rest of the segmentation masks.

Despite the two-stage CNN baseline having access to color
information in addition to shape information, OSSIS is still
able to outperform it in the one-shot setting. This result
suggests that while the Siamese network may perform very
well on objects within its training distribution, it can struggle
to generalize to novel objects. Indeed, when we train the
Siamese network on all of the objects (albeit only seen in
their stable poses), removing the one-shot aspect, it performs
very well, achieving 0.69 mIoU.

We find that the combined one-shot and sim-to-real gener-
alization gap for OSSIS is 21%. One reason for this disparity
is that the real target images are taken with each object in
a stable pose, as mentioned in Section IV, which may be
dramatically different from the pose that the object is in when
lying on top of or underneath other objects. On real images,
oversegmentation tends to occur more frequently, especially
with similarly smooth or rectangular objects. Additionally,
we find that the network may confuse two objects with
very similar, regular shapes (such as a rectangular prism
or sphere), especially if there are multiple distractor objects
with this shape in the same scene as the target object. The
network shows robustness to change in pose and scale on



Fig. 4: We measure the effects of rotating target masks, dropout, and regularization on network performance. We control for
dataset size and number of unique scene images, and train a model on each resulting dataset. Using four rotations per target
mask (R = 4) is the most effective in increasing mIoU and reducing variance while also having a low dataset generation
cost. Applying L2 penalty regularization does not improve the output of the network. We find that slight dropout applied to
the last layer is effective in increasing the one-shot sim mIoU.

both the sim and real datasets.
A visual study of segmentation successes and failures is

shown in Figure 3. In the first row, we see the partially
occluded mango successfully segmented amongst several
distractor objects. The large bag clip in the second row is
also successfully segmented, and is dramatically rotated and
scaled in the scene compared to its target pose. The final
row shows an inherent failure mode: the cylindrical nature
of the Campbell soup can is not represented by the target
shape mask and the network mistakes the partially occluded
lotion for the can, as both shapes are rectangular.

D. Ablations

We characterize both the effect of augmenting the dataset
with rotations and the effect of dataset size on network
performance. Figure 4 suggests that as the total dataset size
increases by adding rotations, so does both the validation
and one-shot mIoU. Rotating twice (R=2) improves one-
shot mIoU significantly but still has high variance, indicating
good performance on some images but failing to segment
others almost entirely. Even though the R=2 dataset does
not present new scene data to the model, it shows significant
improvement over the base dataset by improve both mean
and variance of mIoU. At R=8, the improvement is marginal.
Because the cost of generating the R=8 dataset is double
that of the R=4 dataset for the training datasets, which are
not restricted in size, we use four rotations to generate the
training dataset used in the final results.

We see relatively little difference < 1% between validation
and one-shot results, likely because the generic nature of the
target mask lends itself to being applicable to objects in the
test split. It is important to note that there is an increase in the
gap between one-shot and validation mIoUs as the number
of rotations increases. This may potentially be attributable
to slight overfitting to the scenes in the training set; having
additional rotated shape masks does not preclude overfitting
given that the additional scenes still contain objects only
from the train split.

To demonstrate the effect of 2D rotation augmentations
beyond the increased dataset size, we compared model
performance across datasets with constant size (i.e., same

number of training triplets) that contained different numbers
of unique scenes and target rotations. For example, the
dataset with 4 rotations of the target object contained 4x
fewer images per scene than the original dataset with a single
target object rotation. Figure 4 shows the results. Under
this setup, we found that augmenting by rotating four times
yielded the best performance, suggesting that diversity in
target object rotations for a given scene was more important
in training than more views of a scene (e.g., different camera
poses for the same arrangement of objects).

We additionally perform experiments to reduce network
generalization error when evaluating on either one-shot
dataset. The architecture changes from the original Michaelis
network, which amount to deepening the filters and adding
two additional encoder layers, improve mIoU performance
by 0.045 on the real dataset. While we find L2 penalty to
have no positive effect on performance, dropout at the last
convolutional layer improves one-shot sim mIoU. This is
potentially due to the amodality/modality disparity between
the scene and target inputs; dropout at low feature map levels
can allow for robustness against large occlusion of the object
in the scene. We note that too high of a dropout factor also
leads to severe mIoU loss, because the network begins to
be unable to correctly segment even simple shapes. Using
these ablations, we determine effective hyperparameters for
optimizing mIoU performance in our final results.

VI. CONCLUSIONS AND FUTURE WORK

We present OSSIS, an algorithm trained entirely on sim-
ulated binary target masks and depth images that predicts
modal masks for novel target objects in real images, even in
the presence of rotations, scale differences, and occlusions.
We intend these results to be a first step for this difficult
problem of one-shot shape-based instance segmentation, and
show that using binary target masks can allow for sim-to-real
transfer and can be easily generated from stronger forms of
supervision across datasets. Experiments suggest that OSSIS
outperforms a state-of-the-art convolutional method by 6%
in mIoU.

In future work, we will continue to address the disparity
between one-shot sim and real images and further explore



the impact of target depth information as compared to the
binary mask supervision we use here. lthough our focus in
this paper was an application of one-shot shape-based seg-
mentation to the problem of mechanical search, investigating
its impact to other problems in industrial robotics will require
some reformulation of the problem statement. For instance,
instead of looking for a single target object as is appropriate
for mechanical search, training on multi-class, multi-object
labels could yield a more effective method for segmenting
street scenes for autonomous driving.

Another natural extension of this work is to incorporate
multiple target views simultaneously to improve segmenta-
tion results. While our current formulation assumes a single
physical camera to capture the target object mask, in a
sophisticated pipeline multiple camera angles could provide
more target masks simultaneously. These target masks could
be batched together as input to the network, as opposed to
just passing in one mask. Our initial experiments attempting
to batch target masks with the encoder-decoder network
yielded inferior results, but an alternative method of aggre-
gating target mask information may improve segmentation
results.
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