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Abstract— Robot grasping for automation must be robust to
the inherent uncertainty in perception, control, and physical
properties such as friction. Computing robust grasp points
on a given object is even more challenging when there are
constraints due to a task intended to be performed with the
object, for example in assembly, packing, and/or tool use. To
compute grasps that robustly achieve task requirements, we
designed an intuitive user interface that takes an object mesh
as input and displays it, allowing non-specialists to indicate
“stay-out” zones by painting facets of the mesh and to indicate
desired forces and torques by drawing vectors. The interface
then sends this specification to our server which computes
resulting grasps and send them back to the client where the
resulting parallel-jaw grasp axes are displayed color-coded by
robustness. We implemented this interface in the cloud-based
“Dex-Net as a Service - Task (DNaaS - Task)” system that runs
on any browser and reports examples. The system is available
at: https://dex-net.app

I. INTRODUCTION

Most robot grasping algorithms aim to optimize resistance

to gravity so as to optimize successful lifting, but many

automation applications such as assembly, packing, and tool

use require “task-based” constraints on robot grasping. These

can include limits on where a given object can be touched so

that delicate surfaces such as lenses and high-gloss finishes

are not scratched, or requirements for the robot grasp to resist

forces to be applied to the object beyond gravity, such as

desired insertion forces to achieve packing or assembly, or

torques needed to screw or twist an object.

As a result, grasping algorithms must also take into

account the task to be performed as well as object geometry.

As it can be challenging to specify the task, we present

a novel and intuitive user interface that takes an object

mesh as input and displays it, allowing non-specialists to

indicate “stay-out” zones by painting facets of the mesh and

to indicate desired forces and torques to apply by drawing

vectors. The system then computes and displays associated

parallel-jaw grasp axes color-coded by robustness. We report

on an implemented version of this interface and examples.

This paper makes three contributions:

1) An intuitive “task-based” grasping user interface that

takes as input a 3D object mesh and allows non-

specialists to indicate task constraints with “stay-out”

zones and desired wrenches.

2) A modification of the Dex-Net 1.0 algorithm to compute

robust grasps that meet these task-based constraints with

wrench resistance metric.
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Fig. 1: Task-directed grasping results for a tweezer object. The
top row shows the object mesh, without constraints (left), with stay-
out zones in red (middle), and with a desired applied force in blue
(right). The bottom row shows computed parallel-jaw grasps for
each case; each grasp axis is displayed as a color-coded “whisker”
corresponding to its robustness to the constraints and perturbations.

3) A web-based implementation of robust task-based

grasping as a service.

II. RELATED WORK

Research into task-based grasping has explored various

formulations of the problem and approaches. In this section,

we present this prior research categorized into task-directed

grasping, followed by data-driven strategies to learn the task-

based grasping strategies.

A. Task-Directed Grasping

Grasping diversely shaped and sized novel objects has

a wide range of applications in industrial and consumer

markets. Grasping is often subdivided across grasp synthesis

and grasp quality evaluation. Grasp synthesis generates grasp

candidates from contact locations, while grasp optimiza-

tion evaluates the quality of candidate grasps subject to

criteria such as force closure or wrench resistance [14,

20]. As force closure is a more conservative metric and



guarantees resistance to wrench in any direction, we use

wrench resistance to quantify the ability of a grasp to resist

disturbances along certain directions that specify the task.

Li and Sastry [9], Prats et al. [18] and Haschke et al. [4]

also investigate task-oriented grasping strategies using an

external task wrench. Ortenzi et al. [15] advocate the need of

a task oriented metric for goal-directed robot manipulation

in addition to stability and mean picks per hour.

In addition to grasp analysis, recent work has also fo-

cused on using information about the planned trajectory

to plan grasps. Mavrakis et al. [12] use reasoning about

robot kinematics after grasping to select grasp contact points

and later minimize the work of the resulting trajectory by

choosing from a set of possible grasps [13]. Pardi et al.

[16] focus on choosing grasps that will lead to collision-

free trajectories during the proceeding manipulation task.

Similarly, Zimmermann et al. [24] simultaneously optimize

grasp and motion planning to perform pick-and-place and

handover tasks as part of an assembly pipeline. However,

each of these papers only considers a task where the robot

must execute a trajectory after grasping, and do not consider

external wrenches that must be resisted by the grasp as part

of the task (see [20] for more details). Holladay et al. [5]

present a planner for robot tasks that require motions and

forces with tool-use as an example application.

B. Learning Grasping Strategies

Song et al. [21] presented a task-directed grasping model

taking into account task, action and object information in the

Bayesian setting. Kokic et al. [7] use CNN’s for learning

object affordances, class and object orientation to specify

grasp constraints for task-based grasping. Recently, the au-

thors proposed to predict a suitable task-specific grasping

region by taking an object point cloud as input, where

the hand-object pose labels are learned from human-activity

datasets [6]. Fang et al. [3] propose Task-Oriented Grasping

Network (TOG-Net) that uses self-supervision to jointly op-

timize both the task-based grasp and the manipulation policy

for a tool. Qin et al. [19] propose learning keypoints of tools,

such as grasp point and effect point, through self-supervision

of tasks and using point-cloud observations. Pas et al. [17]

detect graspable object parts from 3D point clouds. Zhirong

Wu et al. [23] use a volumetric representation to study the 3D

representation of objects. Xu et al. [22] propose a learning-

based approach to separately assess the stability of grasps

for several sub-tasks.

In this work, we synthesize grasp locations based on the

stay-out zones, and evaluate the grasp quality with respect to

a given direction in which task wrench is applied to satisfy

the task. We extend the work in [8] to provide robust task-

based grasping as a service for public use.

III. PROBLEM FORMULATION

Given a 3D mesh, represented by a set of faces and vertices

M, and a task that requires the application of a wrench

τ , we define a semantic task-based grasping model m as a

combination of τ and the stay-out zone Mout ⊂ M. Then,

given a model m, we identify a set of grasp candidates

G. Each grasp candidate g ∈ G, defined by a center and

grasp axis, has contact points entirely contained in MC
out,

the complement of Mout, and has an associated quality

r ∈ [0, 1] that measures the ability of g to robustly resist

the task wrench τ under perturbations. Here, r reflects the

relative ability of g to complete the task for the given object.

Higher values of r reflect robustness to perturbations in the

task wrench.

A. System Design Considerations

In this section, we review design considerations for a

robust task-based grasping model, analysis, system, and user

interface.

Objects and tools used in everyday life are well under-

stood by their users, and often by the general population.

Studies [1, 2] have shown that humans are capable of

identifying the suitable grasps for specific tasks. We propose

the following design considerations:

a) Objects may be used for more than one task: As

such the best grasp for an object will be dependent on the

task the robot will perform.

b) Availability of meshes: Meshes for many objects

are readily available in online repositories such as Thingi-

verse [11]. Manufactures of newly designed objects are also

likely to have meshes from the design and manufacturing

process.

c) Leverage human knowledge: Objects designed for

use by humans have a wealth of history and knowledge about

the wrenches and surfaces needed for a task.

d) Model usable by algorithms: The semantic task-

based model should be both intuitive to humans and usable

by grasp-analysis algorithms.

IV. TASK-BASED GRASPING SYSTEM

This section describes a proposed robust-task based grasp-

ing system consisting of three parts: 1) stay-out zones and

desired forces and torques that define the semantics of a task-

based grasp, 2) an informed sampling-based algorithm that

uses the grasp zones to perform grasp analysis and generate

a ranked set of candidate grasps, and 3) a cloud-based

web interface for defining task-specific grasping models for

objects.

A. Semantic Task-Based Grasp Model

To represent a semantic task-based grasp model we use

a mesh augmented with a stay-out zone and an external

wrench. The mesh, as a representation of the surface, fa-

cilitates grasp analysis based on sampled points and area-

contact models. Stay-out zones prevent contacts that hinder

or prevent the task. The wrench specification defines wrench

resistance to perform the task. An example of this model is

shown in Figure 1 with stay-out zones painted in red and

task wrench (force vector) with a blue arrow.



Algorithm 1 Task-Based Grasp Analysis

Require: A mesh M, A stay-out region Mout ⊂ M, and

a task wrench τ
1: Gsamples ← ∅

2: while |Gsamples| < nsamples and not max iterations do

3: p0 ← randomly sample point on M
4: p1 ← shoot ray from p0 within friction cone until

intersection with M
5: g ←

(

1
2
(p0 + p1), (p1 − p0)/‖p1 − p0‖

)

6: if gripper at g not in collision with M
and gripper wide enough for g
and {p0, p1} ∪Mout = ∅ then

7: Gsamples ← Gsamples ∪ {g}
8: Ganalysis ← ∅

9: for all g ∈ Gsamples do {Compute grasp quality}
10: r ← 0
11: for i← 1, . . . , np do

12: gi ← random perturbation of g
13: if gi not in collision and resists τ then

14: r ← r + 1/np

15: Ganalysis ← Ganalysis ∪ {(g, r)}
16: return Ganalysis

B. Task-Based Grasp Analysis Algorithm

To perform a task-based grasp analysis on an object and

identify candidate grasps for a task, we propose a modifica-

tion to the Dex-Net 1.0 grasp planning algorithm in Mahler

et al. [10] for computing analytical grasps on meshes. An

overview of the algorithm is shown in Algorithm 1. The

algorithm takes the stay-out zones and external wrench on

an object mesh as input, and generates a set of grasps along

with associated quality scores. The grasps in the output avoid

the stay-out zones. The associated quality score reflects the

robustness of the grasp in the range [0, 1] indicating how

robustly the gripper is robust to perturbations while resisting

the external task’s wrench, with 0 indicating the grasp will

fail to complete the task, 1 indicating the grasp is highly

likely to complete the task, and values between proportion-

ally representing the likelihood of successful completion.

The algorithm operates by sampling candidate contact

points on the object mesh. Points falling within the stay-

out zone are discarded. We shoot rays from the sampled

candidate contact points in random directions within the

friction cone until they intersect with the object mesh to

create antipodal contact point pairs. From the points, a grasp

candidate g is constructed by taking the center of these

points and computing the grasp axis as the vector between

the points. We then prune these grasp candidates by: 1) the

maximum width of the parallel-jaw gripper, and 2) collisions

with the gripper. We continue to iteratively sample grasp

candidates until we obtain the desired number of grasp

candidates or we reach a fixed maximum number of sampling

iterations.

The algorithm subsequently evaluates grasp candidates

based on their robustness to perturbations in resisting the

Fig. 2: Dex-Net as a Service - Task (DNaaS-Task) online user
interface. The column on the right includes numerical inputs,
including settings on grasp filter, gripper width, stay-out zone
selection, point of application and magnitude for force, orientation
and magnitude for torque. On the left is the object mesh where stay-
out zones can be painted and wrenches indicated. Also, this is where
resulting grasps are displayed after computation. The figure shows
the most robust grasps (in green) for the screw driver for the applied
screw driving task, where the tip of the screw driver is masked as
the stay out zone and a 0.5 Nm clockwise torque is desired. The
online interface is available at: https://dex-net.app

specified external wrench. For each grasp candidate, we

generate np perturbations of the grasp parameters by adding

Gaussian noise to the translation and rotation of the grasp

center point and axis, respectively. We then analyze each of

the grasp candidate perturbations to determine if it can resist

the external task wrench. Mathematically,

r =
1

np

np
∑

i=0

I(min
ξi

‖Giξi − τ o‖2 < ǫ)

s.t. Aξi ≤ h

gi = g +N (0,Σ)

gi /∈ Mout

where Gi ∈ R
6×n is the grasp matrix that transforms the

contact wrenches ξi ∈ R
n corresponding to the perturbed

grasp gi into object frame, τ o ∈ R
6 is the external wrench

transformed into the object frame, ǫ > 0 is a small positive

number, N (0,Σ) denotes the multivariate distribution from

where the perturbation parameters are sampled, A ∈ R
p×n

and h ∈ R
p define linear constraints on the contact wrenches,

and Mout is the stay-out zone. We average r over the np

perturbed grasps, as outlined in Algorithm 1.

C. Task-Based Grasping Web Interface

We build on Dex-Net as a Service (DNaaS) [8] to develop

a cloud-based public API for computing robust task-based

grasps with parallel-jaw grippers on user specified meshes.

The API takes as input an object specified as a 3D triangular



No Task

specified
Lift

Squeeze

Trigger
Pack in Box

Open

Nozzle
Open Bottle

Place on

Shelf

Task Model

Grasps

Fig. 3: Task-directed grasping for spray bottle. The stay-out zones of the spray bottle object displayed on the second row model the
tasks described on the first row, resulting filtered grasps showed on the third row.
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Hang on hook Turn in lock Polish key teeth
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r ∈ [0.0, 0.25)

r ∈ [0.25, 0.75]
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Fig. 4: Standard door key with different task models and the resulting grasps. The same tool mesh for a key with different task
models produces different results in the grasp analysis. The labels on top row describe the task that the second row models. In the second
row, the purple region marks the stay-out zone, the blue arrow shows the direction of force, and the red arrow shows the torque. The
third row shows the sampled grasps with colors corresponding to the quality of grasps, and the next 3 rows show the same grasps split
into 3 groups based on quality scores.

mesh, and user specified task-based parameters defined by

graspable zone and external wrench and outputs a set of

collision-free parallel-jaw grasps filtered by graspable zones,

ranked by their robustness to perturbations in object pose,

gripper pose, the Coulomb friction coefficient and resistance

to the external wrench. The robust quasi-static grasp analysis

engine of the API assumes quasi-static physics, a rigid object

with uniform mass density, and a known friction coefficient.

We assume that the input mesh has triangular faces and fewer

than 70k total faces to ensure grasp computation latency

remains under two minutes.

In this user interface, shown in Figure 2, the object’s mesh

is shown in the center window along with a representation

of a parallel-jaw gripper for testing grasp analysis. In this

window, the user can hover over the mesh surface to mark

stay-out zones, and generate the grasp analysis to preview

the effect of the model.

The external wrench is further specified by clicking to

select the point of application, force settings and torque

settings. The force setting allows the user to indicate a

desired force by directly drawing a force vector on the 3D

mesh object. The torque settings allows the user to create a



Fig. 5: Task-directed grasping for wrench (left) mesh rep-
resentation on top and nominal grasps on bottom, (right) task
representation with stay-out zone and external torque for rotating
the wrench on top and resulting grasps on bottom. Note that the
grasps along the direction and farther from the torque application
point are preferred.

torque constraint on the object with specified rotation axis,

direction, and magnitude.

D. System Architecture

The back-end for task-directed grasp evaluation comprises

of three distinct layers of abstraction. The front-end of the

system is a web-based graphical user interface based on

jQuery that parses user mesh models and grasp computation

requests from a web browser. The frontend uploads mesh

models and makes requests for grasp computations via public

grasping API [8]. Requests are forwarded to the robust

grasp-analysis backend using a Python-based Flask API. The

backend spawns worker processes which analyze the input

mesh model using the robust grasp analysis engine. Each

worker process returns a set of parallel-jaw grasps with

robustness metrics. The grasps are retrieved from the worker

by a monitor process on the API server, which relays the

JSON encoded grasps to the frontend via HTTP. Finally, the

frontend renders the grasps on the 3D object model in the

browser.

The client-side user interface and server-side Flask API

run on a quad-core Intel(R) Xeon(R) CPU E3-1220 v3 with

a clockrate of 3.10GHz and 16GB of RAM. The website is

written using HTML, JavaScript, and CSS served statically

by an Apache web server. We use three.js to render

a 360◦ 3D scene in the browser where candidate grasps

are superimposed on the target object mesh. The page is

designed using a flexible box layout for easy accessibility

across modern web-browsers (Chrome, Safari, Firefox) and

on mobile devices. The website uses the latest version of

jQuery for DOM manipulation, event handling, and Promise-

based asynchronous HTTP requests. The graphical user

interface combines elements from jQuery UI, Bootstrap, and

custom CSS.

V. EXPERIMENTS

A. Effect of Stay-Out Zone on Grasp Filtering

Figure 3 shows a number of examples that can be routinely

performed with the spray bottle including lifting up, packing

Fig. 6: Effect of external wrench on task-directed grasping
Grasps along the direction of rotation and farther from the point of
rotation are preferred on (left) and (left-middle); grasps along the
direction of force and close to the point of application are preferred
on (right-middle) and (right).

Fig. 7: Multi-part assembly task. In this assembly, parts need to
be sequentially grasped and fit together.

into a box, nozzle opening, liquid re-filling, placing on shelf

and so on to capture the effect of stay-out zones on filtering

grasps.

B. Effect of External Wrench on Grasp Quality

We examine the effects of a task wrench with the spray

bottle in Figure 6. We make two observations: 1) grasps

along the direction of torque are preferred with farther grasps

providing a higher moment arm to resist the wrench, 2)

grasps along the direction of force are preferred with grasps

close to the point of application providing a better support

than farther away grasps.

C. Combined Effect of Stay-Out Zone and External Wrench

While the stay-out zones capture the form of the task, the

task wrench is useful to capture the functionality associated

with the task. In Figure 1 and Figure 5, we demonstrate

the combined effect of stay-out zone and external force and

torque respectively while restricting the grasps to lie within

semantic task-specific regions.

D. Household Task

Figure 4 demonstrates a set of common tasks that can

be performed with a key in household environments. Note

that grasps that align with the force direction are ranked as

robust grasps, but grasps that can not resist the task wrench
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Fig. 8: Assembly with different task models and the resulting
grasp analysis. Each row of this above figure show a single object
needed for the multi-part assembly task. The first column shows
the object mesh without the task-based grasp model. The second
column shows the grasp analysis without the task-based grasp
model. The third column shows the stay-out zones and wrenches
needed for the assembly. The fourth column shows the grasp-
analysis based on the model in the third column. With the task-
based model, the robot is able to compute grasps that facilitate
assembly.

Fig. 9: Task-based grasping set-up with the yumi robot: (left) task-directed
grasps on the pawn object (top) with stay-out zone, (right) pick-and-place
trajectory following task with the yumi robot on the pawn object. (left)

task-directed grasps on the mallet object (bottom) with torque constraints,
(right) hammering task snapshot on the mallet object.

are ranked as less robust. Moreover, the grasps that can rotate

the object in the specific direction are ranked as robust.

Figure 9 shows preliminary results of transferring the

grasps on the yumi robot, where the robot grasps the pawn

object from the top for following a pick-and-place task,

and the mallet for hammering task with external torque

constraints.

E. Assembly Task

Figure 7 shows a multi-part assembly and Figure 8 shows

the grasps generated by DNaaS-Task for 4 objects in the

assembly. The stay-out zones prevent the robot from inter-

fering with assembly contacts and the wrenches define the

assembly forces and torques, signifying its appeal to handle

Object Spray Bottle Tweezers Wrench Screwdriver key Overall

Number of faces 812 270 576 292 500 390

Average time(s) 7.41 6.74 7.73 7.03 7.25 7.232

Spray Bottle Lift Squeeze Trigger Pack in Box Place on Shelf Overall

Number of faces in stay-out zone 640 774 770 747 732

Average time(s) 6.91 3.3 4.09 6.80 5.25

Fig. 10: Computation time measurement. The top table provides
statistics for average computation time of five objects: a spray
bottle, a tweezers, a wrench, a screwdriver and a key. The bottom
table provides statistics for average computation time of spray bottle
under various task constrains.

a wide variety of task constraints.

F. Computation Times

The top table in Figure 10 shows grasp computation

times for 5 objects: spray bottle, a tweezers, a wrench, a

screwdriver and a key. Computation time grows with object

complexity (measured by the number of triangular faces in

a mesh).

The bottom table in Figure 10 shows grasp computation

time for a spray bottle under various task constrains pre-

sented in Figure 3 specifically represented by stay-out zone.

There is an inverse relationship between computation time

and the size of the stay-out zone (measured by the number

of stay-out zone faces in a mesh).

VI. CONCLUSIONS

In this paper we present an intuitive task-based grasping

interface and modification to the Dex-Net 1.0 grasp planning

algorithm to compute robust grasps consistent with task

constraints. The system computes robust task-based grasps

for a given specification of a stay-out zone and/or an external

wrench. To demonstrate the interface, analysis, and back-

end, we present experimental results for a variety of objects

and tasks in household and industrial environments. In future

work, we would like to extend DNaaS-Task to suction-based

and multi-finger grippers, and to multilateral manipulation

with two or more grippers.
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